
Ray-tracing in Vulkan

Jason Ekstrand, XDC 2020

A brief overview of the provisional VK_KHR_ray_tracing API



2

Who am I?

▪ Name: Jason Ekstrand

▪ Employer: Intel

▪ First freedesktop.org commit: wayland/31511d0e dated Jan 11, 2013

▪ What I work on: Everything Intel but not OpenGL front-end

– src/intel/*

– src/compiler/nir

– src/compiler/spirv

– src/mesa/drivers/dri/i965

– src/gallium/drivers/iris



3

Vulkan ray-tracing history:

▪ On March 19, 2018, Microsoft announced DirectX Ray-tracing (DXR)

▪ On September 19, 2018, Vulkan 1.1.85 included VK_NVX_ray_tracing for ray-

tracing on Nvidia RTX GPUs

▪ On March 17, 2020, Khronos released provisional cross-vendor extensions:

– VK_KHR_ray_tracing

– SPV_KHR_ray_tracing

▪ Final cross-vendor Vulkan ray-tracing extensions are still in-progress within the 

Khronos Vulkan working group



4

Overview:

My objective with this presentation is mostly educational

▪ Quick overview of ray-tracing concepts

▪ Walk through how it all maps to the Vulkan ray-tracing API

▪ Focus on the provisional VK/SPV_KHR_ray_tracing extension

– There are several details that will likely be different in the final extension

– None of that is public yet, sorry.

– The general shape should be roughly the same between provisional and final

▪ Not going to discuss details of ray-tracing on Intel GPUs



What is ray-tracing?



All 3D rendering is a simulation of 

physical light

6



7



8



9

Why don't we do all 3D rendering this way?

The primary problem here is wasted rays

▪ The chances of a random photon from the sun hitting your scene is tiny

– About 1 in every 2.1x109 photons from the sun even hit the earth

– About 1 in every 4.5x1010 of those will hit the 100ft (30m) radius of your scene

– The sun emits about 1045 photons per second

– You'll never simulate that!

– We can avoid this by approximating the sun as a plane light source



10



11

Why don't we do all 3D rendering this way?

The primary problem here is wasted rays

▪ The chances of a random photon from the sun hitting your scene is tiny

– We can avoid this by approximating the sun as a plane light source

▪ The chances of a random photon bouncing off an object into the eye is tiny

– It may bounce off in the wrong direction

– It may run into some other object first

– We can mitigate some of this by intentionally "targeting" our rays

– Don't make reflected rays random

– Reflect towards the eye/camera when possible



12



13



14

Why don't we do all 3D rendering this way?

The primary problem here is wasted rays

▪ The chances of a random photon from the sun hitting your scene is tiny

– We can avoid this by approximating the sun as a plane light source

▪ The chances of a random photon bouncing off an object into the eye is tiny

– We can mitigate some of this by intentionally "targeting" our rays

▪ But is there a better way?



Camera-to-light ray-tracing



16



17

Advantages of camera-to-light ray-tracing

▪ Better precision

– You can perfectly align every ray leaving the camera with a pixel

▪ Every ray leaving the camera (primary ray) is necessary

– No wasted primary rays! They all hit the camera by definition

– Every primary ray will either hit a visible object or background

▪ Secondary rays can still miss

– The same targeting technique works; you target lights instead of the camera



Forward rendering



Forward rendering is ray-tracing 
from the perspective of the cactus

19



20



21

Forward rendering as ray-tracing

For each triangle that's part of the cactus:

▪ Rays are cast in the direction of the camera:

– The geometry pipeline transforms geometry into camera space

– The rasterizer determines which pixels (rays) intersect that triangle

▪ For each rasterized pixel, rays are cast towards lights

– The fragment shader typically walks the list of lights and computes the ray direction 

and distance to each light to calculate the color

▪ Wasted rays still exist from overdraw and depth test fails

Ok, so it's not perfect. I tried, alright? :-P



22

Disadvantages of ray-tracing

▪ Geometry intersection from arbitrary origin points is expensive

– Forward rendering transforms all the geometry so the camera is the origin

– Ray-tracing invovles computing ray geometry intersections of arbitrary rays with any 

origin point and direction in 3D space

▪ Ray-tracing tends to be noisy

– The "interesting" techniques with ray-tracing usually involve multiple secondary rays 

and are somewhat statistical in nature

– You usually need a post-processing denoise filter

▪ Worse memory access patterns for vertex data etc.

– Forward rendering is nicely streamed; ray-tracing involves lots of random access



23

Advantages of ray-tracing

Some things are easier and simpler when ray-tracing

▪ Shadows

– In forward rendering, it typically requires a Z-pass per light

– When ray-tracing, it's "does this ray hit anything on its way to the light"

▪ Global illumination (light reflecting off one object onto another)

– Can be faked with SSAO etc. but requires multiple post-processing passes

– When ray-tracing, reflect twice and allow tertiary rays

▪ Reflections

– Impossible to get correct without ray-tracing



Accelerating ray-tracing with the 

Vulkan API



25

Accelerating ray-tracing with the Vulkan API

Ray-tracing in Vulkan has two primary parts:

▪ Acceleration structures

– Hold all of the geometry for your entire scene

– Allow acceleration of arbitrary ray geometry intersections

▪ Six new shader stages

– Dispatch rays, handle hits and misses, and define procedural geometry

– Lots of new system-values and intrinsics

It's basically a new 3D rendering API



Acceleration structures



27

Acceleration structures

▪ A data structure to accelerate ray-geometry intersection

– VkAccelerationStructureKHR is a memory-backed object like an image

– Contain all of the geometry for an entire scene

– Built from geometry data with new Vulkan commands:

– VkCmdBuildAccelerationStructureKHR()

– VkCmdBuildAccelerationStructureIndirectKHR()

– VkBuildAccelerationStructureKHR() (for CPU builds)

– Bound via descriptor sets and passed into traceRayEXT() in the shader

– Vulkan doesn't specify how they work internally



28

Acceleration structures

▪ A data structure to accelerate ray-geometry intersection

▪ There are two types of acceleration structures: top and bottom

– Bottom-level acceleration structures contain actual geometry

– Top-level acceleration structures contain bottom-level AS with transform matrices

Top-level AS

Bottom AS

Bottom AS



29

Acceleration structures

▪ A data structure to accelerate ray-geometry intersection

▪ There are two types of acceleration structures: top and bottom

▪ Geometry comes in two types: triangles and AABBs

– AABB = Axis-Aligned Bounding Box, used for procedural geometry



30

Acceleration structures

▪ A data structure to accelerate ray-geometry intersection

▪ There are two types of acceleration structures: top and bottom

▪ Geometry comes in two types: triangles and AABBs

▪ Bottom-level AS have a two-level hierarchy of geometry data:

– An array of geometries, indexed by gl_GeometryIndexEXT

– Each geometry contains an array of primitives of the same type (triangles or AABBs) 
indexed by gl_PrimitiveID

– Only contains position data. Any other geometry input data (texture coordinates, 
colors, etc.) must be fetched by the shader based on those indices



31

Implementing acceleration structures as a BVH

One possible AS implementaiton is a Bounding Volume Hierarchy (BVH)

▪ An N-ary tree data structure

▪ The leaves of the tree are primitives

▪ Each node of the tree has a bounding volume

– Nodes are sorted to try and make the bounding volumes as small as possible

▪ When a ray is traced, the bounding volumes are used to quickly discard as 

much geometry as possible



32



33

Root
Level 1

Level 2



34

Root
Level 1

Level 2



35

Root
Level 1

Level 2



Ray-tracing shaders



37

Ray-tracing shaders

VK_KHR_ray_tracing adds six new shader stages:

▪ Ray generation: Invoked directly by vkCmdTraceRaysKHR()

▪ Any-hit: Invoked any time a primitive hit is detected

▪ Closest-hit: Invoked after ray traversal completes for the hit with lowest T

▪ Miss: Invoked after ray traversal completes if no hits were detected

▪ Intersection: Invoked when an AABB primitive is hit to determine actual 

intersections

▪ Callable: Can be invoked manually from any ray-tracing shader stage



38

Ray generation shaders

Ray generation shaders are the root of the shader "call tree"

▪ Invoked directly by vkCmdTraceRaysKHR()

▪ Look mostly like a compute shader:

– Only one level of 3D dispatch grid (no local/global distinction)

– No shared memory or barriers

– Inputs: gl_LaunchIDEXT and gl_LaunchSizeEXT

▪ Typically call traceRaysEXT() to fire primary rays



39

Any-hit shaders

Any-hit shaders are invoked for each hit

▪ Ordering if invocations along the ray is not guaranteed

▪ Get information about the ray and the primitive via 19 built-ins including

– gl_LaunchIDEXT and gl_LaunchSizeEXT

– gl_GeometryIndexEXT and gl_PrimitiveID

– gl_HitTEXT

▪ Can modify ray traversal

– ignoreIntersectionEXT() ignores this hit

– terminateRayEXT() terminates ray traversal early



40

Closest-hit shaders

The closest-hit shader is invoked at most once at the end of traversal

▪ Has the same 19 built-ins as any-hit shaders

▪ Hit information is for the hit with lowest T

▪ Typically where most "fragment" work such as texturing is done



41

Miss shaders

The miss shader is invoked at most once at the end of traversal

▪ Only invoked if no hits were accepted

– No hits were reported or

– Every any-hit shader called ignoreIntersectionEXT()

▪ Only has built-ins for launch and ray information (no hit)

▪ Could be used for, say, returning the sky color



42

Intersection shaders

Intersection shaders are invoked for every AABBs hit

▪ Used for procedural geometry (such as perfect spheres)

▪ Has most of the same built-ins as any-hit shaders

– No actual hit information

▪ Reports hits via reportIntersectionKHR()

▪ If no intersections are supported, it's considered a miss



43

Callable shaders

Callable shaders are invoked manually by executeCallable()

▪ Only has the two launch built-ins

– gl_LaunchIDEXT and gl_LaunchSizeEXT

▪ Can be used for whatever the client wants



Lost yet? If not, we'll fix that. ;-)

44



45

The ray-tracing call stack

▪ Ray-tracing involves a call stack

– Any RT shader can call traceRayEXT() or executeCallableEXT()

– Interseciton shaders can invoke any-hit via reportIntersectionEXT()

▪ Data is passed up and down the stack via special I/O variables

– A rayPayloadEXT variable can be passed to traceRayEXT()

– A matching rayPayloadInEXT variable can be declared in the called shader

– Payloads are read/write in all shaders

– For executeCallable() it's the same but called callableDataEXT

▪ Yes, it's a real stack; recursion is allowed



46

How do shader calls work in hardware?

This slide intentionally left blank :-)



Still following? Don't worry, that 

won't last long. ;-)

47



48

Shader binding tables

How do we solve the problem of switching shaders?

▪ Forward rendering passes typically use many pipelines

– Typically used to handle different materials

▪ Ray-tracing pipelines can have arbitrarily many shaders of different stages

▪ Pipelines export "groups" of shaders:

– A single ray generation shader

– Any-hit + closest-hit for triangles

– Interseciton + any-hit + closest-hit for AABBs

– A single callable shader



49

Shader binding tables

▪ Each shader group has a 32B "handle"

– Contains information required for dispatching those shaders

– Handles fetched with vkGetRayTracingShaderGroupHandlesKHR()

▪ The client places those handles in a buffer

▪ The SBT buffers and strides are provided to vkCmdTraceRaysKHR()

– All handles must come from the currently bound pipeline



50

Shader binding tables

void vkCmdTraceRaysKHR(

VkCommandBuffer commandBuffer,

const VkStridedBufferRegionKHR* pRaygenShaderBindingTable,

const VkStridedBufferRegionKHR* pMissShaderBindingTable,

const VkStridedBufferRegionKHR* pHitShaderBindingTable,

const VkStridedBufferRegionKHR* pCallableShaderBindingTable,

uint32_t width,

uint32_t height,

uint32_t depth);



Shaders are executed from the provided SBTs

▪ The ray generation shader is always the first one in the table

▪ For miss shaders, traceRayEXT() takes an SBT index

▪ For any-hit, closest-hit, and intersection shaders, the index is calculated:

▪ For callable shaders, executeCallableEXT() takes an SBT index

51

Shader binding tables

instanceShaderBindingTableRecordOffset +

geometryIndex × sbtRecordStride +

sbtRecordOffset



And that's about it! Simple, right?

52



Congratulations, you survived!



Questions?




