
Linux Open-Source 
Graphics Drivers Group

XDC
2020

A year of ACO
from prototype to default

Timur Kristóf

2020



Table of Contents

1. Our ACO story

2. How ACO works

3. Changes to ACO so that it can be the default compiler in RADV
New hardware support
Small bitsizes
Geometry shaders
Tessellation

4. Future plans

1/57



Our ACO journey

2/57



ACO motivation

Fluid gaming
We’d like to give gamers a smooth, stutter-free experience, so we prioritize compilation speed.

Developed in mesa
Issues can be fixed within mesa releases, independently of the schedule of other projects.

Runtime performance
Good divergence analysis allows us to better optimize runtime performance.

3/57



Where we were last XDC

4/57



Supported stages @ XDC 2019

Started with PS only.
Then added CS and VS.

5/57



Supported hardware @ XDC 2019

Started on Polaris (GFX8)
Then Vega was added (GFX9)

6/57



ACO 2019-2020 by numbers

300+ merge requests
5 current contributors
15 supported shader stages
5 supported HW generations (all GCN/RDNA)

Full feature parity

• VK exts supported by RADV work with ACO
• Full conformance on newer HW

7/57



No benchmarks this time, but...
Runtime:

Phoronix has awesome benchmarks.

Compile time:

Consistent with what was shown in XDC2019.

8/57



Where ACO fits in

9/57



RADV/ACO shader compilation

SPIR-V to NIR
Parse the SPIR-V shader into NIR.

NIR lowering and optimization
Lower the IR to be suitable for consumption by RADV / ACO.

ACO shader compilation
Compile the shader into a program the HW can execute.

10/57



Recap: how ACO works

11/57



ACO compilation phases 1-3

1. Instruction selection
Based around the NIR divergence analysis, emits ACO IR which is SSA.

2. Value numbering, optimization
Common subexpression elimination, constant propagation, instruction combining.

3. Setup reductions, insert exec mask
Ensure reductions work. Add instructions that control SIMD lanes.

12/57



ACO compilation phases 4-6

4. Live variable analysis
Calculate register need, used for spilling and scheduling.

5. Spilling
Lower to CSSA, then try to decrease register usage.

6. Instruction Scheduling
Move loads as high up as possible.

13/57



ACO compilation phases 7-9

7. Register Allocation
Works on SSA, emits shuffle code.

8. SSA Elimination
Insert copies to match phi node semantics.

9. Lower to HW instructions
Replace pseudo instructions with machine instructions.

14/57



ACO compilation phases 10-11

10. Insert wait states and NOPs, resolve hazards
Ensure correct behaviour of memory instructions, eliminate HW hazards.

11. Assembler
ACO IR is already almost GCN/RDNA ASM, so only need to encode.

15/57



How we had to change it
to make it the default

16/57



New hardware support

17/57



New (to us) hardware support

Generation Code names Year

GFX6 Pitcairn, Oldand, etc 2012

GFX7 Hawaii, Bonaire, etc 2013

GFX10 Navi 2019

18/57



New (to us) hardware support

• Different assembly encodings
• Some instructions missing on old HW

or removed from new HW
• Missing subgroup features on old HW
• New (to us) hazards
• Very helpful community

19/57



Small bitsizes

20/57



Small bitsizes

We had a lot of ideas.

21/57



Small bitsizes

We had a lot of bad ideas.
Lots of edge cases, more exceptions than rules.

22/57



Small bitsizes

Then we agreed to push the heavy lifting into RA,
but...

23/57



Small bitsizes

Maintaining the register file

• Previously:
256 VGPRs + 106 SGPRs = 362 registers

• Now:
We manage every byte of every register

Yes, every single byte.

24/57



Small bitsizes

RA shuffles are now crazy

• Previously:
We had to move contents of registers

• Now:
We move individual bytes between registers
Sometimes even within the same register

25/57



Small bitsizes

HW support is inconsistent

• Some new HW: keeps high bits
• Other new HW: overwrites high bits
• Old HW: manual coding needed

26/57



Geometry shaders

27/57



Geometry shaders

• New intrinsics
• I/O: LDS, VRAM
• Figure out merged shaders
• GS copy shader

28/57



Geometry shaders: 4 new stages

• vertex_es (GFX6-8)
• geometry_gs (GFX6-8)
• vertex_geometry_gs (GFX9+)
• gs_copy_vs

29/57



Without geometry shaders: just VS
SW Vertex shader (HW VS):
VS go brrrr
export to where PS can read from

30/57



Geometry shaders: separate stages
SW Vertex shader (HW ES):
VS go brrrr
store outputs to VRAM

Geometry shader (HW GS):
load inputs from VRAM
GS does its thing
store outputs to VRAM

GS copy shader (HW VS):
load GS outputs from VRAM
export to where PS can read from

31/57



Geometry shaders: merged VS+GS stage
SW VS+GS (HW GS):
if (am I a SW VS invocation?)

VS go brrrr
store outputs to LDS

endif
if (am I a SW GS invocation?)

load inputs from LDS
GS does its thing
store outputs to VRAM

endif

GS copy shader (HW VS):
load GS outputs from VRAM
export to where PS can read from

32/57



Geometry shaders: GS copy shader

Hardware limitations:

• GS store their outputs in VRAM
• PS read their inputs from elsewhere
• So, we need to copy

(These limitations are eliminated by NGG on Navi)

33/57



Tessellation

34/57



Tessellation

Tessellation shaders don’t actually tessellate.

35/57



Tessellation

• Lots of new intrinsics
• Lots of new stages
• Brain-twister I/O

36/57



Tessellation: merged stages
On GFX9+:

VS and TCS are merged
TES and GS are merged, too.

37/57



Tessellation: 6 new stages

When you have just tessellation:

• VS: vertex_ls (GFX6-8)
• TCS: tess_control_hs (GFX6-8)
• VS+TCS: vertex_tess_control_hs (GFX9+)
• TES: tess_eval_vs

When you also have GS:

• TES: tess_eval_es (GFX6-8)
• TES+GS: tess_eval_geometry_gs (GFX9+) 38/57



Tessellation: optimizing merged stages

Sometimes the number of VS and TCS invocations
are the same.

This happens when the input and output patch size are 3.
Turns out they almost always are.
In this case, VS outputs can be eliminated and transformed to temps.

39/57



Tessellation: I/O

Shaders can now read their own output.

So, sometimes we have to store them in both LDS and VRAM.
Using different layouts.

40/57



Wave32

41/57



Wave32
Optionally,

you can have 32 SIMD lanes instead of 64

This breaks a lot of assumptions we had.

42/57



Wave32: special registers

We had to change every usage of exec and vcc.

43/57



Wave32: booleans
Before:

Uniform (32-bit) vs. divergent (64-bit)

After:

All booleans are now per-lane
Uniforms are optimized back

44/57



Wave32: subgroups
Subgroup size?

45/57



Wave32: subgroups
Subgroup size?

We always report 64
but pretend that 32 of those are disabled

Conforms to the spec, but still troublesome for naive, non-conformant apps
eg. some expect to use the (subgroup_size - 1)th lane

46/57



Wave32: when to use?
It’s off by default (unless you use an env var)

CS: optionally available
VS, TCS, TES, GS: decide based on divergence?
PS: performs bad due to interpolation

47/57



Btw, we fixed some bugs, too

48/57



Btw, we fixed some bugs, too

And we added a unit testing framework to make
sure they don’t happen again.

49/57



Our plans for the future

50/57



RDNA 2 Support

In progress
• We can look at RadeonSI
• We can browse LLVM code

51/57



RadeonSI (OpenGL) support

Long road, but already started
• Unify shader arguments - Connor
• Unify I/O handling - Marek
• but ACO still depends on RADV internals

52/57



Ray Tracing

• There is a draft KHR extension
• And some LLVM code
• ...but no public RDNA 2 HW docs yet

53/57



Mesh shaders

• Possibly doable even on Navi 10 NGG
• ...but no KHR extension yet

54/57



More optimizations

• Rapid-packed math

55/57



More optimizations

• Clauses on Navi
• Post-RA scheduler
• NGG GS
• Others are also on the way
• And more
• And then some

56/57



Thanks
Questions, suggestions, discussion?
A year of ACO
Timur Kristóf

Venemo @ #dri-devel, #radeon, ...
github.com/Venemo/xdc2020-aco

57/57



Linux Open-Source 
Graphics Drivers Group

XDC
2020

A year of ACO
from prototype to default

Timur Kristóf

2020

57/57


	Our ACO story
	How ACO works
	Changes to ACO so that it can be the default compiler in RADV
	New hardware support
	Small bitsizes
	Geometry shaders
	Tessellation

	Future plans

