
X11 and Wayland 
Applications in WSL

WSLG



What is WSL?

• Windows Subsystem for Linux
• Infrastructure to run Linux applications inside of Windows

• For more context on WSL see our other XDC talk
• WSL – Graphics Architecture



WSL Today – Terminal Experience



Most requested WSL features

• Access to the GPU from within WSL
• Mostly for compute

• Most requested is access to NVIDIA CUDA API

• This is the subject of our other XDC talk
• WSL – Graphics Architecture

• Ability to run GUI applications
• Going beyond a terminal only experience and the ability to run X11 and 

Wayland applications

• Subject of this talk



But wait…

• You can run X11 applications in WSL 2 today!

• You can run an X Server in WSL 2
• Run an X Client on Windows and connect to WSL 2

• Lots of instructions online and great videos on YouTube on how to set this up

• It works… but experience is not great
• Fundamentally a desktop in a window experience

• Performance is not great

• No Wayland app support

• Doesn’t work out of the box



Linux GUI App Integration (WSLG)



What’s our approach?

• Building on Weston
• Reference/sample compositor for Wayland

• Extending Weston existing RDP backend and teach it about remoting 
application
• RAIL – Remote application integrated locally

• VAIL – Virtualized application integrated locally 

• Leveraging Pulse Audio for audio in & out
• Bridging over to RDP

• Building with intent of contributing back



WSLG Overview
Linux Guest Windows Host

RDP Client

(mstsc.exe)

Weston

Xwayland

X Server

Wayland socket

X11 App
X11

Wayland
W

ay
la

n
d

 s
o

ck
et

Native 
Wayland App Wayland

RDP RAIL/VAIL Over 
HVSocket

FreeRDP

X
 s

o
ck

et

backend-rdp

RAIL-Shell

libweston

Pulse Audio Server

RDP Sink
RDP 

Source

X Window Manager



Why based this on RDP RAIL/VAIL?

• Mature technology and host side client
• Been remoting applications through RDP for years

• Have mature business built on this technology (Azure WVD)

• Host side client is same irrespective of guest type

• Built-in network transparency and performance scaling
• Over the network -> RAIL -> Pixels copied over the transport

• Over VM boundary -> VAIL -> Shared guest <-> host memory.

• Enable remoting of both X11 and Wayland applications

• Documented & Open Source implementation available
• Continue to use FreeRDP with Weston



Built for remoting transparency

RDP RAIL

RDP VAIL

WSL
RDP VAIL

HyperV VM

Linux PC

RDP RAIL

App Remoting 
Services



RAIL & VAIL 
Overview



Mirrored Desktop

• X11 applications have knowledge and can have direct control over 
their placement on the X desktop

• In RAIL mode, the guest and the host have the same desktop 
configuration:
• Same number of monitors, at same location, resolution, orientation, etc…

• Initial desktop configuration sent by RDP Client upon connecting
• New configuration information sent by RDP Client when desktop 

configuration changes
• Monitor added/remove/repositioned/rotated/resolution change/…



RAIL – Mirrored Desktop - Connection
Windows HostLinux Guest

Monitor1

Monitor0

RDP Desktop (0,0)

On RDP Connection, RDP guest 
sends initial desktop configuration 
to the RDP server

wl_output1

wl_output0

Linux (0,0)
RDP Input (0,0)



RAIL – Mirrored Desktop – Desktop Change
Windows HostLinux Guest

Monitor1

Monitor0

RDP client Send configuration 
change to RDP server.

wl_output1

wl_output0

Monitor0wl_output0

wl_output.geometry wl_output.mode

Wayland Clients

Event



RAIL – Proxying top level Visual

• RDP client on the host create a proxy visual for every top level visual 
created by the server in the guest
• Proxy window is borderless. No non-client area. All pixels are owned by the 

RDP Server.

• Damage pixel in the guest/server are copied to the host



RAIL – Proxying top level Visual - Create
Windows HostLinux Guest

Monitor1

Monitor0

wl_output1

wl_output0

wl_surface window

RDP Server send new window 
creation to the RDP Client



RAIL – Proxying top level Visual - Update
Windows HostLinux Guest

Monitor1

Monitor0

wl_output1

wl_output0

wl_surface window

RDP Server send pixels for the 
damage area of the visual to the 
RDP Client

Damage
Dirty 
Rect



RAIL – Proxying top level Visual - Destroy
Windows HostLinux Guest

Monitor1

Monitor0

wl_output1

wl_output0

wl_surface window

RDP Server send window 
destruction to RDP guest



RAIL – Proxying top level Visual – Move/Resize
Windows HostLinux Guest

Monitor1

Monitor0

wl_output1

wl_output0

wl_surface window

RDP Client sends raw input to RDP Server

Raw input

wl_surface

RDP Server send new window 
position and/or size and content

window



RAIL & Composition Beat
Linux Windows

App Compositor

Composition thread 
Processing update @60hz (timer)

Shared memory 
buffer

Pixels copied 
over the 
network 
transport

Received from 
network 
transport



VAIL + Software Rendering
Linux Windows

App Compositor

Shared memory 
buffer

Buffer shared with 
the host

Commit notification 
processed without delay. 

No more 1 extra frame latency
(extra ~100us introduced by transport)

DX11

Staging
Surface

DCOMP 
Swapchain

2 copies

CPU copy to 
staging

GPU copy to 
swapchain

DX12 1 copy

dmg dmg

Create Staging around 
shared memory

GPU copy to 
swapchain

Need vGPU for zero copy



VAIL + vGPU
Linux Windows

App Compositor

Shared memory 
buffer

Buffer shared with 
the host

Commit notification 
processed without delay. 

No more 1 extra frame latency
(extra ~100us introduced by transport)

DCOMP 
visual

dmg dmg

Zero copy

Shared swapchain bound to 
DCOMP visual

Minimal latency 
overhead



Packaging 
and Servicing
wsl --update



System Distro

User 
Distro #1 System Distro

WSL 2 Linux Kernel

socket Xwayland

Wayland 
Compositor

socket

• WSLG ships side by side in a system distro
• Compositor has a clean and isolated 

user space and project socket back 
into user distro
• Sort of like a container, isolated 

mount and PID space.
• Each distro has a unique instance of 

the system distro
• Each system distro has RDP 

connection back to the host

Pulse Audio 
Serversocket

User 
Distro #2 System Distro

socket Xwayland

Wayland 
Compositor

socket

Pulse Audio 
Serversocket



Servicing

• Shipped separately from Windows
• Always kept up to date

• Let Window Update handle this for you if you want
• Or take control of update

• wsl --update

• System distro is read-only, replaced on update
• Same model & technology used to update the WSL 2 Kernel
• Simple rollback mechanism in case something goes wrong

• Custom system distro
• User can use wsl config options to replace system distro with one of their own
• Everything needed to build a system distro open source
• Updates only changes the default system distro, don’t impact user custom



Works out of the box

• Automatically setup on WSL install or update
• User distro pre-configured during WSL custom init

• Install GUI app & launch

• Linux app appears in the Windows Start Menu
• Any applications with a .desktop file

• Don’t want it or prefer to use an X-Server & Client?
• Can disable WSLG in wsl config

• Can keep today’s behavior

• Preview coming soon to Windows Insider



Demo


