
X11 and Wayland 
Applications in WSL

WSLG



What is WSL?

• Windows Subsystem for Linux
• Infrastructure to run Linux applications inside of Windows

• For more context on WSL see our other XDC talk
• WSL – Graphics Architecture



WSL Today – Terminal Experience



Most requested WSL features

• Access to the GPU from within WSL
• Mostly for compute

• Most requested is access to NVIDIA CUDA API

• This is the subject of our other XDC talk
• WSL – Graphics Architecture

• Ability to run GUI applications
• Going beyond a terminal only experience and the ability to run X11 and 

Wayland applications

• Subject of this talk



But wait…

• You can run X11 applications in WSL 2 today!

• You can run an X Server in WSL 2
• Run an X Client on Windows and connect to WSL 2

• Lots of instructions online and great videos on YouTube on how to set this up

• It works… but experience is not great
• Fundamentally a desktop in a window experience

• Performance is not great

• No Wayland app support

• Doesn’t work out of the box



Linux GUI App Integration (WSLG)



What’s our approach?

• Building on Weston
• Reference/sample compositor for Wayland

• Extending Weston existing RDP backend and teach it about remoting 
application
• RAIL – Remote application integrated locally

• VAIL – Virtualized application integrated locally 

• Leveraging Pulse Audio for audio in & out
• Bridging over to RDP

• Building with intent of contributing back
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Why based this on RDP RAIL/VAIL?

• Mature technology and host side client
• Been remoting applications through RDP for years

• Have mature business built on this technology (Azure WVD)

• Host side client is same irrespective of guest type

• Built-in network transparency and performance scaling
• Over the network -> RAIL -> Pixels copied over the transport

• Over VM boundary -> VAIL -> Shared guest <-> host memory.

• Enable remoting of both X11 and Wayland applications

• Documented & Open Source implementation available
• Continue to use FreeRDP with Weston



Built for remoting transparency
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RAIL & VAIL 
Overview



Mirrored Desktop

• X11 applications have knowledge and can have direct control over 
their placement on the X desktop

• In RAIL mode, the guest and the host have the same desktop 
configuration:
• Same number of monitors, at same location, resolution, orientation, etc…

• Initial desktop configuration sent by RDP Client upon connecting
• New configuration information sent by RDP Client when desktop 

configuration changes
• Monitor added/remove/repositioned/rotated/resolution change/…



RAIL – Mirrored Desktop - Connection
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RAIL – Mirrored Desktop – Desktop Change
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RAIL – Proxying top level Visual

• RDP client on the host create a proxy visual for every top level visual 
created by the server in the guest
• Proxy window is borderless. No non-client area. All pixels are owned by the 

RDP Server.

• Damage pixel in the guest/server are copied to the host



RAIL – Proxying top level Visual - Create
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RAIL – Proxying top level Visual - Update
Windows HostLinux Guest
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RAIL – Proxying top level Visual - Destroy
Windows HostLinux Guest
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RAIL – Proxying top level Visual – Move/Resize
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RAIL & Composition Beat
Linux Windows
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VAIL + Software Rendering
Linux Windows
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VAIL + vGPU
Linux Windows
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Packaging 
and Servicing
wsl --update



System Distro
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• WSLG ships side by side in a system distro
• Compositor has a clean and isolated 

user space and project socket back 
into user distro
• Sort of like a container, isolated 

mount and PID space.
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Servicing

• Shipped separately from Windows
• Always kept up to date

• Let Window Update handle this for you if you want
• Or take control of update

• wsl --update

• System distro is read-only, replaced on update
• Same model & technology used to update the WSL 2 Kernel
• Simple rollback mechanism in case something goes wrong

• Custom system distro
• User can use wsl config options to replace system distro with one of their own
• Everything needed to build a system distro open source
• Updates only changes the default system distro, don’t impact user custom



Works out of the box

• Automatically setup on WSL install or update
• User distro pre-configured during WSL custom init

• Install GUI app & launch

• Linux app appears in the Windows Start Menu
• Any applications with a .desktop file

• Don’t want it or prefer to use an X-Server & Client?
• Can disable WSLG in wsl config

• Can keep today’s behavior

• Preview coming soon to Windows Insider



Demo


