
Understanding Linux Lists

The tool for looking at kernel lists: https://gitlab.inria.fr/lawall/liliput

TCB safety
Thread Control Block.  struct that holds thread data; safety critical applications of accidental tampering by 
priv. Or non-priv. users. 

https://linuxplumbersconf.org/event/7/contributions/699/attachments/539/1089/TCB_Safety_v1.0_final.pdf 

CONFIG_HARDENED_USERCOPY 

Memprotect() 

Use hypervisor to trap: prevents wild pointer failure mode 

Use CRC to detect change between switching out and before switching back in 

Safety in processes CPU execution state

Task isolation
Concern is that some of the task sanitizers are rather heavy.

Codethink mitigation
wraps system calls in safe layer - different from seccomp?
Doesn't cover 100% of the code - entry_64.s not covered
Tested with getpid() call
Significant overhead in system calls
qemu is used as a test tool (virtual vs. real hardware differences issue)
Upstream acceptability is a concern

Going forward:More user-space mitigations, partial task isolation

Testing is time consuming

Assessing kernel system call correctness by testing

Linux running on several systems and we should be harvest the assurance data ... This is very difficult to do. 
Systems are different and failure modes are different

Testing is the second issue. Can we achieve completeness of testing. With Linux it is hard to answer.. Linux 
is complex and non-determninistic.

https://linuxplumbersconf.org/event/7/contributions/699/attachments/539/1089/TCB_Safety_v1.0_final.pdf


It is hard to put a multi-core system in a deterministic state. Async events from ouside and inside the system 
at play.

Becasue of the non-deterministic nature of the kernel, it is hard to repeat an operation in a deterministic way.

A simple system call could take detours depending on the globa kernel state - possibly slow paths, memory 
reclaim could happen in between for example. The path is not the same from one excuation of the call to 
another.

The test case with moniroing the system state. Using a random backgroud load to monitor "hidden tate".

The key question is "idependence"
Is the test methodolgy valid? The test strategy depends on the assumption that the system calls can be 
independently analyzed.

Will 2 reads in succession influence each other.

syzkaller generates random sequence of system calls. What this test si doing is aopposite of what syzkaller 
doe. The system calls are called with correct parameters and hence work.

This isn't a kernel developent tool. It is an assurance tool.

Background load has intersections with the system call.

http://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html

Maintaining results from static analysis collaboratively?

Sharing info to help with identification of false positives.

Open question:  after running sparse and cocinnelle, there are 1000's of warning.  Most which can't be 
silenced.

KCIDB - 

Kernel CI - is aggregatting.   How to collect results in common way is already in progress.   Run time from 
static analysis differing.

kunit & static analysis.    Talk about this tomorrow.   BOF later in the week.

Common shared format - needs to be agreed on.

Heridoto tool during 5.6 tools, using coccinelle was done
http://coccinelle.lip6.fr/herodotos/herodotos.php

Pick this up in KernelCI talk tomorrow.  Community has started to gather there.

http://coccinelle.lip6.fr/herodotos/herodotos.php
http://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html


Following the Linux Kernel Defence Map

stackleak is part of the kernel since 4.20

https://github.com/a13xp0p0v/linux-kernel-defence-map

CWE - Common Weakness Enumeraions - https://cwe.mitre.org/data/definitions/699.html

Stack protector mitigates some return address overwrite attacks, but not in all cases.

The last slide has links to references

https://github.com/a13xp0p0v/kconfig-hardened-check

Recommendations for configs are provided by different groups, and they are listed in kconfig-hardened-
check

https://github.com/clipos

Some recommendations for kernel harden check come from kspp, clipos, defconfig, lockdown and reducing 
attack surface discussions, userspace hardening work/dicussions, direct feedback from maintainers

One company used it with security tool without giving credit.   Not good. 

see also https://www.kernel.org/doc/html/latest/arm64/pointer-authentication.html

Linux Kernel Defence Map
Kernel hardening check
Don't change config wthout understanding attack surface for your system

https://github.com/KSPP/linux/issues/14 ?

https://github.com/a13xp0p0v/kconfig-hardened-check/issues/44

Linux Kernel dependability - Proactive & reactive thinking

Challenge is how to shift focus to more proactive designs.

4000 contributors per year into the kernel, how can we get this resolved better - getting good commit logs are
hard.

Avoiding Security Flaws

https://cwe.mitre.org/data/definitions/699.html
https://github.com/a13xp0p0v/kconfig-hardened-check/issues/44
https://github.com/KSPP/linux/issues/14
https://www.kernel.org/doc/html/latest/arm64/pointer-authentication.html
https://github.com/clipos
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/linux-kernel-defence-map


Security Flaws are just Bugs.


