
External / Untrusted Device Management

- Rajat Jain
Google

1

● Firmware marks certain PCIe rootports as “External-facing”.
● PCI subsystems marks any devices downstream those as “Untrusted”

pci_dev->untrusted is used:

● By PCI to disallow ATS (and hopefully block translated addresses).
● By Intel IOMMU driver to setup bounce buffers + enforce “strictness” of

IOMMU

Trust v/s Location - Current Situation

2

● Uncovered use cases today
○ Internal untrusted devices
○ Only a subset of devices in a hierarchy untrusted

● Need a way to mark devices as untrusted, independent of location.
○ Info could come from user (Cmdline / sysfs)
○ Or platform (firmware / acpi / devicetree - will need a new property)

● Should have 2 separate fields => location and untrusted.
○ kernel components can use these as needed

● At what layer is it helpful to have these? (device core v/s PCI)

Separating Trust from Location

3

LOCATION

● Semantically an immutable property of the device.
○ Primary current interest in current context is “internal vs external”.
○ dev->location filled by bus when registering a device.

● Initialization options:
○ From platform ACPI/DT info (which we can only hope is correct).
○ Override using cmdline
○ Override via sysfs (discussed in RFC #3) - has challenges.

● Userspace use cases (+ may be kernel use cases we don’t know yet?)
○ statistics for external devices
○ show something in UI when an external device connects etc.
○ Identifying location seems like a useful piece of info.

RFC #1: Expose “Location” to userspace

4

● Semantically represents a knob that defines trustworthiness of a device.
● Initialization options:

○ From platform ACPI/DT info
■ May be use location, just like we do today (to not cause

regressions)?
■ Introduce a property for firmware to mark devices as

trusted/untrusted?
○ Override using cmdline
○ Override via sysfs (discussed in RFC #3) - has challenges.

● Expose it to userspace to allow the userspace to implement userspace
policies it may want for untrusted devices:

○ Warn about an untrusted device plugged in.
○ Log device VID/DID/serial number etc for the admin.
○ Control whether to attach a driver.

● Struct device->untrusted v/s struct pci_device->untrusted ?

RFC #2: Expose “Untrusted” to userspace

5

● No good solution for devices in boot path
○ No userspace to tell if a device is trusted or not.
○ Need to rely on info provided by firmware (or command line).

● “Untrusted” need to be consumed by early PCI / IOMMU drivers, atleast before its driver
begins to attach.

● Solution would entail to allow a mechanism that would:
○ Enumerate devices, but stop before attaching a driver to the device.
○ Let userspace change “Location” & “untrusted” as and if needed.
○ A way for userspace to say go ahead and attach the drivers

■ (just before which, PCI/IOMMU need to now consume the fields).

● This problem may be more important to solve for “untrusted” attribute than the
“location” (only use case: buggy firmware). cont...

RFC #3: Make “Location” and “Untrusted”
writable in sysfs

6

Option 1: USB’s “authorized / default_authorized ” UAPI fits the bill to a large
degree semantically, and moving it to driver core sounds good, but there are
some challenges:

● USB “authorized” UAPI conflicts with thunderbolt’s “authorized”.
● If a device is deauthorized, need to also deauthorize all child devices?

Authorization for a new hierarchy may be tricky / racy for userspace.
● Current USB UAPI is widely used, and I’m worried that we might need

some changes (to adapt to new needs). (Bonus slides if needed)
● May need a much wider discussion and buy in (Thunderbolt? User space

tools?) (and effort)? Need suggestions and help to finalize the UAPI.

Option 2: Use “drivers_autoprobe” to disable autoprobe of devices (for <some
devices=?>), and enable later, via “drivers_probe”.

● “drivers_autoprobe” doesn’t work for PCI because it decided to attach the
drivers explicitly via device_attach() (which does not honour
drivers_autoprobe).

… RFC #3 (Options Considered)

7

● Value in starting with something (RFC #1 and RFC #2)
even though solution to RFC #3 is not very clear?

○ They don’t have a functional change, but provide info to user who
today has no way to know the kernel’s knowledge about which
devices it is choosing to trust.

● Looking for support / help
○ Volunteers to own pieces!
○ Alternate Big Picture proposals

Requests

8

Open Discussion / Questions

Thank You !

9

Current Semantics:

… RFC #3 (Option1: USB “authorized” UAPI)

usb_dev->authorized (writable in sysfs):
 0 => Device is not usable (Nit: interface drivers are unbound, usb_device_drivers are not)
 1 => Device is usable (interfaces are rediscovered, but user needs to manually use drivers_probe)
 Default value : derived using usb_hcd->authorized_default (below) and “location determined in bus specific way”

usb_hcd->authorized_default (writable in sysfs):
 USB_DEVICE_AUTHORIZE_NONE => All FUTURE devices below this hcd will be deauthorized by default
 USB_DEVICE_AUTHORIZE_ALL => All FUTURE devices below this hcd will be authorized by default
 USB_DEVICE_AUTHORIZE_INTERNAL => Only internal FUTURE devices below this will be authorized by default
 Default value : derived using usbcore’s authorized_default parameter and “hcd specific info (wired/wireless)”

usbcore’s authorized_default parameter (writable in sysfs):
 USB_AUTHORIZED_NONE => Set any new Future usb_hcd’s authorized_default to USB_DEVICE_AUTHORIZE_NONE
 USB_AUTHORIZED_ALL => Set any new Future usb_hcd’s authorized_default to USB_DEVICE_AUTHORIZE_ALL
 USB_AUTHORIZED_INTERNAL => Set any new Future usb_hcd’s authorized_default to USB_DEVICE_AUTHORIZE_INTERNAL
 USB_AUTHORIZED_WIRED => Set any new Future usb_hcd’s authorized_default to either NONE / All depending on
wired/wireless
 Default value : USB_AUTHORIZED_WIRED

10

Current USB “authorized” UAPI

USB host Controller

-> authorized_default (All / None / Internal-only)

USB Device
->authorized (0/1)

USB Device
->authorized (0/1)

USB Device
->authorized (0/1)

USB Device
->authorized (0/1)

Usbcore.authorized_default
(All / None / Internal-only /
Wired-only(default))

usb_dev->authorized (writable in sysfs):
 0 => Device is not usable (Nit: interface drivers are unbound,
usb_device_drivers are not)
 1 => Device is usable (interfaces are rediscovered, but user needs
to manually use drivers_probe)
 Default value : derived using usb_hcd->authorized_default (below)
and “location determined in bus specific way”

usb_hcd->authorized_default (writable in sysfs):
 USB_DEVICE_AUTHORIZE_NONE => All FUTURE devices below this hcd will be deauthorized by default
 USB_DEVICE_AUTHORIZE_ALL => All FUTURE devices below this hcd will be authorized by default
 USB_DEVICE_AUTHORIZE_INTERNAL => Only internal FUTURE devices below this will be authorized by default
 Default value : derived using usbcore’s authorized_default parameter and “hcd specific info (wired/wireless)”

11

○ Conflicts with Thunderbolt.
○ Is “Location based” (USB_DEVICE_AUTHORIZE_INTERNAL)

○ Where do we hold “authorized_default” in device core? (USB has it at
usb_hcd level).

■ May be have it at each device level that controls its children?

○ Nit: usb_dev->authorized=0 only unbinds interface drivers
(usb_driver), but not usb_device_driver, but I think it may be OK to
unbind them also with this UAPI?

○ USB also has interface->default,
usb_hcd->interface_authorized_default. That will stay in USB. OK?

“Authorized” UAPI Challenges for our use
case

12

Device Core “authorized” UAPI

device->authorized (writable in sysfs):
 0 => Device is not usable (Device core unbinds the drivers, calls bus_type specific deauthorize_device() hook)
 1 => Device is usable (Device core calls bus_type specific authorize_device() hook, (and then possibly autobinds the
drivers)?)
 Default value : derived by device core using dev->parent->authorized_default (below) and dev->location OR dev->untrusted
device->authorized_default (writable in sysfs):
 DEVICE_AUTHORIZE_NONE => All FUTURE devices below this dev will be deauthorized by default
 DEVICE_AUTHORIZE_ALL => All FUTURE devices below this dev will be authorized by default
 DEVICE_AUTHORIZE_INTERNAL => Only internal FUTURE devices below this dev will be authorized by default
 DEVICE_AUTHORIZE_TRUSTED => Only trusted FUTURE devices below this dev will be authorized by default
 Default value : derived using bus_type’s authorized_default(dev) hook ”

Bus can have its have its own policy to implement authorized_default() policy (writable in sysfs). Eg USB can continue to
have a parameter with values:
 USB_AUTHORIZED_NONE => authorized_default() returns DEVICE_AUTHORIZE_NONE
 USB_AUTHORIZED_ALL => authorized_default() returns DEVICE_AUTHORIZE_ALL
 USB_AUTHORIZED_INTERNAL => authorized_default() returns DEVICE_AUTHORIZE_INTERNAL
 USB_AUTHORIZED_WIRED => authorized_default() returns NONE / All depending on wired/wireless
 Default value : USB_AUTHORIZED_WIRED

● Bus drivers to populate up dev->untrusted and dev->location before device_add().
● Bus drivers to provide hooks to device core:

○ authorize_device()
○ deauthorize_device()
○ authorized_default()

13

