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Overview

● (Very) short history
● (Very) short DTrace overview
● DTrace using BPF, etc
● Significant implementation details
● Unanswered questions
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(Very) short history

● DTrace on Linux started in 2010
● First version in Oct 2011
● Under active development every since
● Redesign without big kernel patches

– Planning since mid-2018
– Coding started July 2019
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(Very) short DTrace overview

● Two components:
– Kernel space producer (~45K lines)

● Core kernel support functions
● Core kernel probes
● DTrace core and provider modules

– Userspace consumer (~55K lines)
● Userspace library and front-end
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DTrace using BPF, etc

● Kernel provides probing mechanisms
● BPF gives us an execution engine
● BPF programs attach to probes
● Output written to perf_event ring buffer
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Not that easy!

BPF
● Probe specific 

program types
● Probe specific 

context
● One program per 

probe

DTrace

● Single program type

● Consistent probe 
context

● Many clauses per 
probe
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Design philosophy

● Assume we can do everything in 
userspace

● Assume this will not impact performance 
and stability

● Keep dreaming
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Design philosophy 
(revised)

● Assume we can do everything in userspace
● Assume this will not impact performance and stability
● Re-implement DTrace in userspace
● Perform accuracy, performance, and stability tests
● Evaluate findings:

– Confirm kernel patches are  not needed, or
– Kernel patches are needed (and we can show why)
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Implementation details

● Each D clause is compiled into a BPF function 
dt_func(dt_dctx_t *dctx)

● BPF trampoline program generated for each probe that 
is being enabled

● Trampoline calls the BPF functions for the probe 
clauses

● Completely different from what DTrace used to do
● Much more elegant… but…
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Implementation details

● Compile entire clauses instead of actions
● Compiler re-targeted to BPF
● Disassembler re-targeted to BPF
● Added a linker to construct programs
● Implement memory management for local, global, 

and TLS variables
● BPF support functions (compiled with gcc)
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Unanswered questions

● Impact of lack of code sharing
● Pointer value identification

– Pointer to BPF memory (stack, map value) → direct deref possible
– Pointer to kernel memory                             → bpf_probe_read()

● Dynamic variables
● ERROR probes (esp. arguments)
● Standard DTrace SDT probes
● String manipulation functions
● Scalability (what if I need to probe 1000s of probes)
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Where to find it?

● Source code:

http://github.com/oracle/dtrace-utils/tree/2.0-branch-dev
● Mailing list:

dtrace-devel@oss.oracle.com

http://github.com/oracle/dtrace-utils/tree/2.0-branch-dev
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Why?

● People want it!
– DTrace has been around for a long time
– Well documented feature set
– Available on multiple operating systems

● Powerful programmable tracing system
– Easy to do very basic tracing
– Powerful enough for complex tracing across many probes
– Stable enough for long-term tracing (incl. Always-on tracing)

● Easier to develop new features for it
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