
PCI hotplug: movable BARs and bus numbers
Linux Plumbers Conference 2020 – VFIO/IOMMU/PCI MC

Sergei Miroshnichenko <s.miroshnichenko@yadro.com>

August 24, 2020

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Part I: Topology, windows and BARs

Constraints:

Device’s BAR may reside only in a
window of its downstream port;

Every switch port (upstream and
downstreams) has 3 windows – one
for each BAR type: IO, MEM and
PREFETCH;

Neighbouring windows can not
intersect.

Window of an upstream port covers
all windows of downstream ports,
and also switch’s own BARs if any;

BARs and windows in a parent
window may be shuffled in arbitrary
order.

The assignment algorithm:

Calculate window sizes bottom-up;

Assign window addresses from top
to bottom;

Assign BARs to their windows.

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Reserving gaps in address space

If requested larger windows, new
BARs can fit in the reserved gaps in
the address space;

Usually a bootloader/BIOS/UEFI
provides an enumerated PCI
topology, and the kernel may
accept it;

But the kernel is able to assign
BARs by its own means.

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Hot-adding a chassis (switch)

Reserved gaps mostly works of endpoint
devices, but adding even a single GPU
may be a problem because of its large
BARs.

Attaching a chassis (which starts with a
switch) multiplies this problem.

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Fixed BARs

bool pci dev bar fixed(

struct pci dev *dev,

struct resource *res)

{
/* Bridge windows are never fixed */

if (resno >= PCI BRIDGE RESOURCES)

return false;

if (res->flags & IORESOURCE PCI FIXED)

return true;

if (!pci can move bars)

return false;

if (dev->driver &&

dev->driver->bar fixed)

return dev->driver->bar fixed(dev,

resno);

if (!dev->driver && !res->child)

return false;

return true;

}

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Effects of these changes

Before, a hotplug event on a slot was local to its direct switch only, just utilizing the reserved gaps between the used BARs, without
altering the switch’s registers.

But when BARs are movable, hotplug event in the middle of the PCIe tree affects almost every bridge window of almost every switch in
the whole topology.

An interrupt from pciehp (standard hotplug driver) will lead to a full domain rescan.

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Calculating bridge windows

Release movable BARs;

Release windows;

Don’t touch hardware registers
yet!

Fill the new fixed range field for
every struct pci bus;

fixed range is propagated to parent
windows;

Recalculate window sizes taking
fixed range into account;

Minimal start address is needed to
make the window cover its fixed
BARs: pci bus alloc resource(bus,
res, size, align, min, 0,
pcibios align resource, dev);

As windows are assigned now based
on the min start address, they must
be sorted beforehand.

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Assigning windows example 1/5

A window set with the leftmost
fixed BAR is assigned first, starting
from the downstream root port;

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Assigning windows example 2/5

A window set with the leftmost
fixed BAR is assigned first, starting
from the downstream root port;

Next are windows below, leading to
fixed BARs;

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Assigning windows example 3/5

A window set with the leftmost
fixed BAR is assigned first, starting
from the downstream root port;

Next are windows below, leading to
fixed BARs;

Then movable and new BARs;

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Assigning windows example 4/5

A window set with the leftmost
fixed BAR is assigned first, starting
from the downstream root port;

Next are windows below, leading to
fixed BARs;

Then movable and new BARs;

The second set must start at the
beginning of its first fixed BAR;

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Assigning windows example 5/5

A window set with the leftmost
fixed BAR is assigned first, starting
from the downstream root port;

Next are windows below, leading to
fixed BARs;

Then movable and new BARs;

The second set must start at the
beginning of its first fixed BAR;

And the rest – the movable ones –
are assigned last.

Now it’s time to write new BARs
and windows to PCI registers

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Fallback

Reassignment may fail: blocked by fixed BARs, or not
enough address space. A working layout must be
restored.

Need to track which BARs were working before a PCI
rescan with the new res mask bitmask in struct
pci dev;

Some BAR can remain unassigned since previous
attempt (e.g., not provided by BIOS), need to retry
them.

Try different policies of BAR assignments:

– try every BAR, even those that weren’t assigned
before;

– if that fails, retry without those failed BARs;

– if that fails, retry without one of hotplugged
devices.

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Support of movable BARs in drivers

NVMe need to pause before a rescan, and remap its BAR0 after:

static bool nvme bar fixed(struct pci dev *pdev, int resno)

{
return false;

}

static void nvme rescan prepare(struct pci dev *pdev)

{
struct nvme dev *dev = pci get drvdata(pdev);

nvme dev disable(dev, true);

nvme dev unmap(dev);

dev->bar = NULL;

}

static void nvme rescan done(struct pci dev *pdev)

{
struct nvme dev *dev = pci get drvdata(pdev);

nvme dev map(dev);

nvme reset ctrl(&dev->ctrl);

}

static struct pci driver nvme driver = {
.bar fixed = nvme bar fixed,

.rescan prepare = nvme rescan prepare,

.rescan done = nvme rescan done,

};

Some switches have BARs, but portdrv doesn’t use them:

static bool pcie portdrv bar fixed(struct pci dev *pdev, int resno)

{
return false;

}

static struct pci driver pcie portdriver = {

.bar fixed = pcie portdrv bar fixed,

}

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

lockdep

The enable mutex is added to struct pci dev to help with the race in pci enable bridge() + pci is enabled(). But the kernel test robot
reported a possible recursive locking, because the bridge also enables its parent.

But if replace by mutex lock nested(&dev→enable mutex, X), the max supported value of a subclass argument is
(MAX LOCKDEP SUBCLASSES - 1) = 7, so BDF address is not suitable – bus number range is {0 – 255}.

Probably using depth, like in i2c, may help with that, if the current PCI topology is not very deep.

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Other issues addressed

Few things had to be solved before getting to BARs:

Race in pci enable bridge() + pci is enabled(): reproduces when drivers are starting simultaneously for devices in a non-pre-enabled
bridge – fixed by a per-device mutex;

PCIe-specific settings (Max Payload Size) weren’t not applied to hot-added bridges;

The IO and MEM bits of bridges weren’t re-checked after hotplug events;

Some BIOSes report PCIBIOS MIN MEM in the middle of the PCI address space.

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

TODO: Resizable BARs

Work in progress on integrating the support of Resizable BARs.

BIOS sets only 256MiB size for GPU’s BAR for compatibility, but AMD GPUs use this feature to map the entire VRAM.

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Part II: Hot-adding a large switch

Any bus number assignment policy can be broken by hotplugging nested bridges:

+-[0020:00]---00.0-[01-20]--+-00.0-[02-20]--+-00.0-[03-07]-- <-- *BRIDGE*

| | +-...

| | \-05.0-[1c-20]--

04.0-[xx-xx]--+-00.0-[xx-xx]--

+-04.0-[xx-xx]--

+-09.0-[xx-xx]--

+-0c.0-[xx-xx]----00.0-[xx-x]--+-01.0-[xx-xx]--

| +-02.0-[xx-xx]--

| +-04.0-[xx-xx]--

| +-05.0-[xx-xx]--

| +-06.0-[xx-xx]--

| +-07.0-[xx-xx]--

| +-08.0-[xx-xx]--

| +-09.0-[xx-xx]--

| +-0a.0-[xx-xx]--

| +-0b.0-[xx-xx]--

| +-0c.0-[xx-xx]--

| +-0d.0-[xx-xx]--

| +-0e.0-[xx]----00.0 NVMe

| +-0f.0-[xx-xx]--

| +-10.0-[xx-xx]--

| \-11.0-[xx-xx]--
+-10.0-[xx-xx]--

+-11.0-[xx-xx]--

...
Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Movable bus numbers: Concept

Instead of reserving numbers, let’s “push” the “tail” of the tree to free numbers for the new switch (bus 04→1e, 05→1f, etc.):

+-[0020:00]---00.0-[01-08]--+-00.0-[02-08]--+-00.0-[03]-- <-- *BRIDGE*

| | +-01.0-[04]--

| | +-02.0-[05]--

| | +-03.0-[06]--

| | +-04.0-[07]--

| | \-05.0-[08]--

+-[0020:00]---00.0-[01-22]--+-00.0-[02-22]--+-00.0-[03-1d]----04.0-[04-1d]--+-00.0-[05]--

| | | +-04.0-[06]--

| | | +-09.0-[07]--

| | | +-0c.0-[08-19]----00.0-[09-19]--+-01.0-[0a]--

| | | | +-02.0-[0b]--

| | | | +-04.0-[0c]--

| | | | +-05.0-[0d]--

| | | | +-06.0-[0e]--

| | | | +-07.0-[0f]--

| | | | +-08.0-[10]--

| | | | +-09.0-[11]--

| | | | +-0a.0-[12]--

| | | | +-0b.0-[13]--

| | | | +-0c.0-[14]--

| | | | +-0d.0-[15]--

| | | | +-0e.0-[16]----00.0 NVMe

| | | | +-0f.0-[17]--

| | | | +-10.0-[18]--

| | | | \-11.0-[19]--
| | | ...

| | | \-15.0-[1d]--
| | +-01.0-[1e]--

| | +-02.0-[1f]--

| | +-03.0-[20]--

| | +-04.0-[21]--

| | \-05.0-[22]--

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Movable bus numbers: drivers

linux/include/linux/pci.h: BDFs are not used by the drivers explicitly, but via handlers:

int pci read config byte(const struct pci dev *dev, int where, u8 *val);

int pci read config word(const struct pci dev *dev, int where, u16 *val);

int pci read config dword(const struct pci dev *dev, int where, u32 *val);

int pci write config byte(const struct pci dev *dev, int where, u8 val);

int pci write config word(const struct pci dev *dev, int where, u16 val);

int pci write config dword(const struct pci dev *dev, int where, u32 val);

Probably still need to block the writes to registers except of the Subordinate Bus Number, Secondary Bus Number, BARx and
Base+Limit.

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Movable bus numbers, huge problem: sysfs and procfs

sysfs and procfs entries and symlinks of devices are all based on their BDFs, which may change after a PCI rescan

% ls -la /sys/bus/pci/devices

0000:00:00.0 -> ../../../devices/pci0000:00/0000:00:00.0

0000:00:02.0 -> ../../../devices/pci0000:00/0000:00:02.0

...

0000:04:00.0 -> ../../../devices/pci0000:00/0000:00:1c.6/0000:04:00.0

0000:40:00.0 -> ../../../devices/pci0000:00/0000:00:1d.2/0000:40:00.0

% ls -la /proc/bus/pci/*

/proc/bus/pci/00:

00.0

02.0

...

1f.4

1f.6

/proc/bus/pci/04:

00.0

/proc/bus/pci/40:

00.0

% ls -la /sys/devices/pci0000:00/

0000:00:00.0

0000:00:02.0

...

0000:00:1f.3

0000:00:1f.4

0000:00:1f.6

% ls -la /sys/devices/pci0000:00/0000:00:1c.6/0000:04:00.0/driver

driver -> ../../../../bus/pci/drivers/iwlwifi

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Movable bus numbers: bus renaming

The only renaming function found in the kernel is device rename(&dev→dev, new name), it is used now only to rename network
interfaces, and is marked with “Note: Don’t call this function”.

How should udev react on renamed devices? “remove”+”add” implies a completely new device, but that is not the case.

Sysfs entries are created by the kernel during bus add device(dev)+pci create sysfs dev files(dev), removed during
bus remove device(dev)+pci remove sysfs dev files(dev)

Sysfs symlinks – device add class symlinks(dev) and device remove class symlinks(dev)

Procfs entries – pci proc attach device(dev) and pci proc detach device(dev)

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

Movable bus numbers: brutal way

Supposing that sysfs renaming is permissible, the following proof of concept has been constructed: destroy all sysfs and procfs entries
and symlinks before renaming the device, and then recreate them back, based on new BDFs.

The bus remove device(dev) is too aggressive - it also detaches the device from its driver, which is preferred to avoid.

As an experiment, the bus disconnect device(dev) was added to the Base API, which is the same as original bus remove device(dev),
but without the call to device release driver(dev).

That’s not the only change in the Base kernel API required for this approach: the existing bus add device(dev),
device add class symlinks(dev) and device remove class symlinks(dev) had to be made public.

As a result, it is used to hot-add chassis full of NVMe drives, SAS HBA and other devices. It was totally worth it! :)

Sergei Miroshnichenko <s.miroshnichenko@yadro.com> PCI hotplug: movable BARs and bus numbers

