
Criteria of Using VFIO Mdev
(vs. Userspace DMA)

Kevin Tian, Ashok Raj



Purpose of Discussion

• VFIO mdev is the subdevice passthrough framework since 2017
• Standard uAPI but require some emulation in kernel

• In-kernel emulation raises concern recently 
• When pushing a new mdev implementaion for IDXD device

• To be discussed in this session
• Is it acceptable to put device emulation in kernel?
• If no, what is the right approach? 
• If yes, how to prevent abuse of this framework?



VFIO MDEV

• In-kernel subdevice passthrough framework
• Work queue, queue pair, context, etc.
• vGPUs, Channel I/O devices, crypto devices, etc.

• Same uAPIs for device/subdevice passthrough
• Existing VMMs just work!
• Require some degree of emulation in host driver

• Wrap subdevice as a virtual device (e.g. PCI)
• Mediate control operations on subdevice

• Opens raised when using mdev in IDXD driver
• Is it acceptable to put emulation in kernel?

• E.g. low-risk pci cfg + simple mmio emulation…

• If no, should vfio-mdev be deprecated and 
replaced by userspace DMA frameworks?

• If yes, how to prevent abusing it as easy path to 
hook into virtualization stack?

VFIO

vfio-mdev vfio-pci

VM

Qemu

Guest DriverGuest DriverGuest Driver

VM

VMM-another

Guest DriverGuest DriverGuest Driver

Host Driver

vdev vdev

Device Device



Userspace DMA
• Allow userspace to directly ‘access’ device

• E.g. mmap the command portal and submit workload

• Could be expanded for subdevice passthrough
• Then contain vdev emulation in userspace
• From ‘allow-access’ to ‘allow-control’
• Meet virtualization demand 

• DMA map vs. vSVA, posted intr, live migration, etc.

• However, 
• Every driver requires specific uAPI support in all VMMs!

• Although the real user is inside guest

• Handling ‘control’ may increase uAPI complexity a lot
• Modern ‘access’ uAPI is very simple (e.g. uacce)
• ‘control’ uAPI might become a device API, to cover 

requirements from different guest Oses

• Some degree of uAPI duplication

• It is not a net win over vfio-mdev!
• VFIO wins on vendor agnostic uAPI

VM

Qemu

Guest DriverGuest DriverGuest Driver

Host Driver

vdev

Device

vdev vdev

Userspace DMA

AppAppApp

VFIO

vfio-pci

Device



Proposal

• VFIO mdev has its merit as a standard subdevice passthrough framework
• It’s fine if some driver wants to do its own way
• But if vfio-mdev is used, we need criteria/process to catch any abuse 

• Thoughts on preventing abuse:
• A voting process similar to virtio

• How to catch new attempt of mdev implementation?
• A new mailing list for focused review/discussion of mdev implementations

• Or, using KVM mailing list is sufficient?
• Reduce code duplication

• E.g. PCI Cfg space emulation, ioctl helpers, etc…
• Explore moving some emulation to userspace
• …



Backup



History of VFIO MDEV

• Initial discussion (link) about a common mdev framework for vGPUs

• Converged proposal presented in KVM forum 2016 (link)

• Vfio-mdev debuted in kernel 4.10 (2017), with KVMGT as the 1st user

• Other mdev implementations came in following years (s390 channel 
I/O devices, crypto devices, etc.)

• Recent hardware assistence (e.g. Intel Scalable IOV) allows reduced 
complexity and increased scalability (link)

https://lists.gnu.org/archive/html/qemu-devel/2016-02/msg00569.html
http://www.linux-kvm.org/images/5/59/02x03-Neo_Jia_and_Kirti_Wankhede-vGPU_on_KVM-A_VFIO_based_Framework.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Hardware-Assisted-Mediated-Pass-Through-with-VFIO-Kevin-Tian-Intel.pdf

