

Isolated Dynamic User Namespaces

Stéphane Graber (Canonical) <stgraber@ubuntu.com> Christian Brauner (Canonical) <christian.brauner@ubuntu.com>

Isolated Id Mappings

LINUX

PLUMBERS CONFERENCE

- LXD has supported isolated id mappings since 2016.
 - Each container has its own, non-overlapping id mapping.
 - Limited to a full POSIX (65536) range by default.
 - Isolated id mappings only isolated within LXD instance not globally.
 - Another container runtime or user can trivially create overlapping mappings.

Isolated Id Mappings In Userspace

LINUX

PLUMBERS CONFERENCE

- Could isolated id mappings be coordinated in userspace? No.
 - No coordination method exists and is cumbersome to implement.
 - We tried to have that discussion.
 - Userspace contract would need to be adhered to by anyone using user namespaces → Basically impossible.
 - Most container runtimes ignore /etc/sub{g,u}id.
 - systemd advocates and ignores /etc/sub{g,u}id completely too.
- Size limitation of the ranges is becoming a problem.
 - Default size of 65536 isn't enough these days.
 - Network authentication commonly uses very high uid/gid in seemingly random ranges. As do a variety of services.
 - To be safe with most cases, we'd need a range of 10000000 limiting the total number of containers on the system to less than 500.

Kernel Enforced Id Mappings: Keeping track of mappings

LINUX

PLUMBERS CONFERENCE

- First approach was to introduce new sysctl or boot option to switch kernel into isolated id mapping mode.
 - Only allow allocation of contiguous maps (no holes or complex maps).
 - Track active mappings via IDRs and lookup maps by starting id.
 - Refuse if map is active and allow if map is not active.

Kernel Enforced Id Mappings: Keeping track of mappings

LINUX

PLUMBERS CONFERENCE

- Needs method to lookup free id mappings or random free map assigned at user namespace creation time.
- Would break old applications when running in that mode.
- Severely limits number of container that can be run.
- Seem hackish.

Kernel Enforced Id Mappings: Going 64bit

LINUX

PLUMBERS CONFERENCE

- Discussed and design between Eric, Stéphane, Aleksa, and I.
 - Switch id types _in the kernel_ to 64bit.
 - Lower 32bit continue to be used by userspace, upper 32bit used by the kernel.
 - Introduce new clone3(CLONE_NEWUSER_ISOLATED) generating a new kernel-side 32bit integer (upper 32bit of 64bit kuid_t).
 - Allow to specify owner uid/gid during clone3() and default to effective uid/gid.

Kernel Enforced Id Mappings: Going 64bit

LINUX

PLUMBERS CONFERENCE

- In this mode uid_map/gid_map are full range (unsigned 32bit)
 - Allows to support post-POSIX range users that allocate high-range uid/gid (LDAP, systemd, etc).
 - Full unsigned 32bit uid/gid range, compatible with every Linux workload.
 - No need for different container runtimes to collaborate on uid/gid ranges and benefits everyone.
 - Trivial nesting because of removed need to split existing range.
 - Simplified usage of user namespace for newcomers \rightarrow Finally increase adoption.
 - Clear owner for a user namespace will make monitoring/interacting way easier.
 - 64bit uid/gid invisible from userspace.
 - Use owner uid/gid to give a credential to use when interacting with a different isolated namespace.