o

A Look Inside Mutter / GNOME Shell

Hi

Mutter

What’s Mutter

- Based on Clutter
- Mutter = Metacity + Clutter
- Alibrary to write compositors
- Atiny compositor
- Supports plugins
- GNOME Shell is a Mutter plugin
- X011/ Wayland

Mutter, Clutter, Cogl, What?

Mutter
(Compositor)

Mutter, Clutter, Cogl, What?

Clients

libwayland-s
erver

[

Mutter
(Compositor)

Mutter, Clutter, Cogl, What?

Clients

"

libwayland-s
erver

|

Mutter
(Compositor)

Mutter, Clutter, Cogl, What?

Clients

"

libwayland-s
erver

Mutter
(Compositor)

Kernel
Hardware

Mutter, Clutter, Cogl, What?

libwayland-s Mutter
erver (Compositor)
Clutter
4—
Clients (=
Cogl

Mesa

Kernel
Hardware

Mutter, Clutter, Cogl, What?

Clients

"

libwayland-s Mutter
erver (Compositor)

Mutter
(GBM / KMS)

Kernel
Hardware

Mutter, Clutter, Cogl, What?

Clients

"

libwayland-s
erver

Mutter
(Compositor)

libinput

Mutter
(GBM / KMS)

Kernel
Hardware

On XI1...

Mutter
(WM)

Clutter

Cogl

Clients

Kernel
Hardware

Cogl

Cogl

An abstraction layer over OpenGL

- Allows dealing with GL in an object-oriented manner

- Predates Vulkan by many years, yet surprisingly
similar!

- Was an independent project before being merged
with Mutter

- Most APIs revolve around CoglContext and
CoglFramebuffer

Clutter

Clutter

An OpenGL-based toolkit

- Previously, and application toolkit

- Forked, copy lives inside Mutter

- Slowly progressing to be a compositor toolkit

- Actors, stage, views, etc, allow creating nice effects
- Animation framework

- Input handling

Clutter

- Traditional toolkit update cycle:
- Layout: places actors somewhere
- Paint: paint actor contents
- Pick: determine what's beneath the cursor
- 2D actor tree on 3D space
- Uses paint volumes for basic culling
- Affine transformations everywhere

Frame Clock

Frame Scheduler

- Recently the frame scheduler was improved
- Goal was to give more room for applications to draw
- ..and higher chances for reducing latency

Frame Scheduler

I —————

| — monitor vsync
= — next frame
m — skip frame

Frame Scheduler (improved)

I ————_

| — monitor vsync
= — next frame
m — skip frame

Transactional KMS

.. or, at least, the path to

Non-transactional (until GNOME 3.32)

GNOME Shell
Frag me (333 % % Frag me
: % 3 % :
3% *

Kernel

Author: Jonas Adahl, Red Hat

Fake Transactional (current)

GNOME Shell

e)
S s 9
EN = =
< 2 2
- -
Frame ® ® © Frame
. I 3 ik -3 -
: e N LW :
\ 3 A :
Transaction :
o :
S 96 :
2 3 3 :
333 e
> :
2 2\ :
FH O\ \F :
G :
—————————————————————————————— - —————._—-———l

Kernel

Author: Jonas Adahl, Red Hat

Atomic Transactional (TBD)

GNOME Shell

S g
3 3
T <
Frame \® \® Frame
. i k-3 .
: A N} :
\ \
Transaction
————————————————————————————————— L T ——

Kernel

Author: Jonas Adahl, Red Hat

Transactional KMS

- Updates KMS state and composited image atomically
- Needs to be able to switch between OpenGL and:
- Hardware overlays for compositing
- Accelerated cursor plane
- CRTC gamma for color management
- DRM buffer modifiers
- Most of the code lives under src/backends/native/meta-kms-*
- Thread safety in mind
- Eventually, a dedicated KMS thread
- Multi-threaded KMS transaction setup

While Talking About KMS...

Basically no support for overlay planes yet
- Mutter uses the cursor plane at most
- Will require deep surgery in Mutter's Clutter
- Use libliftoff perhaps?
- Seems like the most reasonable option for now

Input

Input

- Uses libinput and xcb
- Implemented as seats
- Device owners and source of events
- Wayland: MetaSeatNative
- XI: MetaSeatXI1l
- Next steps: input thread
- Work in progress:
https:/qitlab.gnome.org/GNOME/mutter/-/merge _requests/1403

https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403

Input Thread

Author: Carlos Garnacho, Red Hat

Input Thread

Author: Carlos Garnacho, Red Hat

Input Thread

Author: Carlos Garnacho, Red Hat

Input Thread

Author: Carlos Garnacho, Red Hat

Potential Benefits

No missed libinput events

No blocked cursor pointer

Better handling of high frequency devices
Reuse of cursor plane (e.g. for tablets)

In general, peace of mind

Author: Carlos Garnacho, Red Hat

Screen Sharing

Screen Sharing

Based on PipeWire

Pre-allocates a number of buffers
Cycles through them

Supports streaming metadata
Fast path: DMA-BUF sharing
Slow path: g/ReadPixels()

Screen Sharing (fallback)

Mutter

PipeWire

(destroyed)

Screen Sharing (DMA-BUF)

_>

(destroyed)

PipeWire

Screen Sharing

Demo!

Screen Sharing

° No NVidia support
° No X11 support

Some thoughts:

° Dealing with GBM is a breeze

° PipeWire doesn't send critical DMA-BUF info, such as modifiers
o Thisshouldn't be hard to add to PipeWire though
o Great task to start contributing

Screen Sharing

° Links

o https:/aithub.com/obsproject/obs-studio/pull/3338

o https://aitlab.gnome.org/feaneron/obs-xdg-portal/-/merge_requests/5
° If you have a modern Linux distribution:

$ flatpak install --user https://flathub.org/beta-repo/appstream/com.obsproject.Studio.flatpakref

https://github.com/obsproject/obs-studio/pull/3338
https://gitlab.gnome.org/feaneron/obs-xdg-portal/-/merge_requests/5
https://flathub.org/beta-repo/appstream/com.obsproject.Studio.flatpakref

Other Plans

Other Plans

- Finish transition to Graphene
- Retained rendering tree
- Deeper, more detailed profiling

Graphene

- Agraphics data types library
- Platform-specifc optimizations: SSE 2 & 4.1, ARM NEON, etc
- Jackpot: graphene matrices!
- Mutter is halfway through the transition
- Finish porting to Graphene
- Only basic data types ported
- Last battle is CoglMatrix » graphene_matrix_t
- Help needed

Graphene

Q&A

Thanks!

