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What is Flatpak?



  

A distribution-independent, Linux-based 
application distribution and deployment 

mechanism for desktop applications



  

distribution-independent
● run on any distribution
● build on any distribution
● Any version of the distribution



  

Linux-based
● Flatpak runs only on Linux
● Uses linux-specific features
● However, needs to run on older kernel
● Current minimum target

– RHEL 7
– Ubuntu 16.04 (Xenial)
– Debian 9 (Stretch)



  

Distribution mechanism
● Built in support for install
● Built in support for updates
● Anyone can set up a repository



  

Deployment mechanism
● Run apps in a controlled environment

– “container”

● Sandbox for improved security
– Default sandbox is very limited
– Apps can ask for more permissions



  

Desktop application
● Focus on GUI apps
● No root permissions
● Automatically integrates with desktop
● App lifetimes are ad-hoc and transient
● Nothing assumes a “sysadmin” being available



  

How is flatpak different from 
containers

Filesystem layout



  

● Examples:
– REST API micro-service
– Website back-end

● Few dependencies, all hand-picked
● Runs as a daemon user
● Writes to nonstandard locations in file-system
● Not a lot of integration with host

– DNS
– Port forwarding
– Volumes for data

● No access to host filesystem
● Updates are managed

Docker requirements



  

Docker layout
● One image for the whole fs

– Bring your own dependencies
– Layout up to each app

● Independent of host filesystem layout



  

Flatpak requirements
● Examples

– Firefox
– Spotify
– gedit

● Expects standard filesystem layout
● App data read-only
● Store state in users home directory
● Share file paths with host
● Lots of dependencies

– Constant updates



  

Flatpak layout
● App image on /app, read-only
● Runtime in /usr

– Shared dependencies
– Versioned
– Bundle everything else

● Some private mounts (/dev, /run, /proc, /tmp)
● Other paths mounted as on host (if visible)
● Store state in ~/.var/app/$APPID
● Some host data exposed in /run/host

– Icons
– fonts



  

How is flatpak different from 
containers

Filesystem implementation



  

Docker implementation
● Must support arbitrary writes

– Needs union-style file-system

● / is one mount
– Volumes are bind-mounted on top

● Docker daemon babysits
– Mounts fs on container start
– Unmount on container exit

● Uses layers to improve sharing



  

Flatpak implementation
● / is per-instance tmpfs

– Unmounts when last process dies

● Images are read-only with “prefix” layout
– Regular directories
– Mounted read-only at /usr, /app

● Exposed host directories bind-mounted in place
● GC unused images using file locks
● Image content is shared via hard-linking

– OSTree
– Opportunistic sharing 
– Share disk and page-cache



  

The flatpak sandbox



  

Flatpak sandbox
● Two reasons:

– Distro independence
– Security

● Base of everything
– User namespaces
– PR_SET_NO_NEW_PRIVS
– No root permissions!
– Always use user uid

● App permissions:
– Static

● Set up at app launch time

– Dynamic
● Interactive

● Security domain is the application id
– “org.gnome.gedit”



  

Bubblewrap
● Sandboxing setup helper
● Extracted from flatpak

– https://github.com/containers/bubblewrap

● Builds up tmpfs from inside
● Useful from shell 

bwrap --ro-bind /usr /usr 
 --symlink usr/lib64 /lib64 
 --proc /proc --dev /dev 
 --unshare-pid bash

● Setuid alternative mode

https://github.com/containers/bubblewrap


  

Namespace use
● Pid ns unshared

– Pid 1 is babysitter

● User ns unshared (if possible)
● Network ns unshared (by default)

– Only loopback available

● Ipc ns unshared (by default)
– Unfortunately important for XShm performance



  

Seccomp use
● Blocks

– Syslog, accounting, quota
– Various scary VM syscalls
– Weird socket families (x25, ipx, etc)
– Kernel keyring
– Recursive namespaces

●  Optionally allow
– Multiarch
– Perf
– PTrace



  

CGroup use
● Creates systemd --user scope

– “app-flatpak-$appid-$pid.scope”

● Hard to do more unprivileged



  

Device nodes
● Default /dev

– full, null, zero
– stdin, stdout, stderr
– random, urandom
– tty, pts, ptmx, console

● Optionally
– dri, nvidia
– kvm

●  Also optionally whole host /dev



  

Sockets
● Optional

– X11
– Wayland
– PulseAudio
– Cups
– ssh agent
– pcsc (smartcard)
– System dbus
– Sesson dbus

● Always
– p11-kit server (pkcs11 certs)



  

DBus filtering
● Connect to session bus via filtering proxy

– xdg-dbus-proxy

● Default access
– Can talk to the bus itself
– Can receive messages
– Can own app-id name (org.gnome.gedit)
– Can talk to org.freedesktop.portal.*

● Extensible via permissions
● Also a11y, system busses



  

Portals
● Accessible due to default filter
● Permissions are enforced by portal itself

– Based on peer socket credentials
– Interactive

● Existing portals
– Xdg-desktop-portal

● File chooser, print, open-uri, screencast, etc...
● Backends: gtk, kde

– Document portal
● Fuse mount

– Flatpak portal
● Sub-sandbox
● Self-updates



  

Plumbing issues



  

Tagging containers
● Set Immutable ID on new container
● Portals need to identify containers

– Given a unix domain socket fd

● Current options
– SO_PEERCREDS

● pid, uid, gid

– SO_PEERSEC
● SELinux label, AppArmour context, ...

– CGroup path

● Now: SO_PEERCREDS → pid → /proc/$PID/root/.flatpak-info
– Pids are racy
– Disallows recursive namespace use



  

Abstract sockets
● Bound to network namespace
● Broken scenarios

– Network access, but not all abstract sockets
– No network, but some abstract socket

● Abstract sockets are lame
– Limited path length
– Can’t rearrange in namespace

● Can everyone stop using them!
– Just use regular sockets in /run



  

Userspace network filtering
● Currently all or nothing
● Want in-between option

– NAT:ed
– IP range filtering
– …

● Current options
– slirp4netns
– CGroup eBPF socket filter

● Needs root



  

Want unprivileged overlayfs
● Not currently possible
● Mainly for building



  

fs-verity
● Immutable files
● Merkle tree allows signatures
● Very good match for OSTree
● Needs more fs support



  

CGroups v2
● Seems like it could be used for flatpak
● Needs research



  

Dynamic device nodes
● Want device type filtering

– “All joysticks”
– “All usb devices with this vendor/class”
– Dynamic

● Currently only possible if in subdir
– /dev/dri

● Want better approach?



  

Proxy-less dbus filtering
● Don’t want proxy

– Less processes
– Less copies

● Filter in the bus itself
● dbus-daemon implementation:

– https://gitlab.freedesktop.org/dbus/dbus/-/issues/185

– Status
● WIP
● No updates in years

● Other implementations
– dbus-broker?

https://gitlab.freedesktop.org/dbus/dbus/-/issues/185


  

PipeWire
● New video & audio daemon
● Replaces PulseAudio
● Built with sandboxing in mind
● Needs work to integrate as portal



  

GPU drivers
● Needs to match kernel version

– Nvidia – hard requirement
– Mesa/DRM – soft requirement

● ABI issues makes it hard to use host driver
– libcapsule / dlmopen

● DRI kernel ABI needs to be backwards compat



  

Questions
● Links:

– https://flatpak.org/

– https://github.com/flatpak/flatpak/

– https://github.com/ostreedev/ostree

● Reaching us

– alexander.larsson@gmail.com

– flatpak@lists.freedesktop.org

– #flatpak on freenode

https://flatpak.org/
https://github.com/flatpak/flatpak/
https://github.com/ostreedev/ostree
mailto:alexander.larsson@gmail.com
mailto:flatpak@lists.freedesktop.org
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