

Alexander Larsson, Red Hat

Flatpak

a desktop version of containers

What is Flatpak?

A distribution-independent, Linux-based
application distribution and deployment

mechanism for desktop applications

distribution-independent
● run on any distribution
● build on any distribution
● Any version of the distribution

Linux-based
● Flatpak runs only on Linux
● Uses linux-specific features
● However, needs to run on older kernel
● Current minimum target

– RHEL 7
– Ubuntu 16.04 (Xenial)
– Debian 9 (Stretch)

Distribution mechanism
● Built in support for install
● Built in support for updates
● Anyone can set up a repository

Deployment mechanism
● Run apps in a controlled environment

– “container”

● Sandbox for improved security
– Default sandbox is very limited
– Apps can ask for more permissions

Desktop application
● Focus on GUI apps
● No root permissions
● Automatically integrates with desktop
● App lifetimes are ad-hoc and transient
● Nothing assumes a “sysadmin” being available

How is flatpak different from
containers

Filesystem layout

● Examples:
– REST API micro-service
– Website back-end

● Few dependencies, all hand-picked
● Runs as a daemon user
● Writes to nonstandard locations in file-system
● Not a lot of integration with host

– DNS
– Port forwarding
– Volumes for data

● No access to host filesystem
● Updates are managed

Docker requirements

Docker layout
● One image for the whole fs

– Bring your own dependencies
– Layout up to each app

● Independent of host filesystem layout

Flatpak requirements
● Examples

– Firefox
– Spotify
– gedit

● Expects standard filesystem layout
● App data read-only
● Store state in users home directory
● Share file paths with host
● Lots of dependencies

– Constant updates

Flatpak layout
● App image on /app, read-only
● Runtime in /usr

– Shared dependencies
– Versioned
– Bundle everything else

● Some private mounts (/dev, /run, /proc, /tmp)
● Other paths mounted as on host (if visible)
● Store state in ~/.var/app/$APPID
● Some host data exposed in /run/host

– Icons
– fonts

How is flatpak different from
containers

Filesystem implementation

Docker implementation
● Must support arbitrary writes

– Needs union-style file-system

● / is one mount
– Volumes are bind-mounted on top

● Docker daemon babysits
– Mounts fs on container start
– Unmount on container exit

● Uses layers to improve sharing

Flatpak implementation
● / is per-instance tmpfs

– Unmounts when last process dies

● Images are read-only with “prefix” layout
– Regular directories
– Mounted read-only at /usr, /app

● Exposed host directories bind-mounted in place
● GC unused images using file locks
● Image content is shared via hard-linking

– OSTree
– Opportunistic sharing
– Share disk and page-cache

The flatpak sandbox

Flatpak sandbox
● Two reasons:

– Distro independence
– Security

● Base of everything
– User namespaces
– PR_SET_NO_NEW_PRIVS
– No root permissions!
– Always use user uid

● App permissions:
– Static

● Set up at app launch time

– Dynamic
● Interactive

● Security domain is the application id
– “org.gnome.gedit”

Bubblewrap
● Sandboxing setup helper
● Extracted from flatpak

– https://github.com/containers/bubblewrap

● Builds up tmpfs from inside
● Useful from shell

bwrap --ro-bind /usr /usr
 --symlink usr/lib64 /lib64
 --proc /proc --dev /dev
 --unshare-pid bash

● Setuid alternative mode

https://github.com/containers/bubblewrap

Namespace use
● Pid ns unshared

– Pid 1 is babysitter

● User ns unshared (if possible)
● Network ns unshared (by default)

– Only loopback available

● Ipc ns unshared (by default)
– Unfortunately important for XShm performance

Seccomp use
● Blocks

– Syslog, accounting, quota
– Various scary VM syscalls
– Weird socket families (x25, ipx, etc)
– Kernel keyring
– Recursive namespaces

● Optionally allow
– Multiarch
– Perf
– PTrace

CGroup use
● Creates systemd --user scope

– “app-flatpak-$appid-$pid.scope”

● Hard to do more unprivileged

Device nodes
● Default /dev

– full, null, zero
– stdin, stdout, stderr
– random, urandom
– tty, pts, ptmx, console

● Optionally
– dri, nvidia
– kvm

● Also optionally whole host /dev

Sockets
● Optional

– X11
– Wayland
– PulseAudio
– Cups
– ssh agent
– pcsc (smartcard)
– System dbus
– Sesson dbus

● Always
– p11-kit server (pkcs11 certs)

DBus filtering
● Connect to session bus via filtering proxy

– xdg-dbus-proxy

● Default access
– Can talk to the bus itself
– Can receive messages
– Can own app-id name (org.gnome.gedit)
– Can talk to org.freedesktop.portal.*

● Extensible via permissions
● Also a11y, system busses

Portals
● Accessible due to default filter
● Permissions are enforced by portal itself

– Based on peer socket credentials
– Interactive

● Existing portals
– Xdg-desktop-portal

● File chooser, print, open-uri, screencast, etc...
● Backends: gtk, kde

– Document portal
● Fuse mount

– Flatpak portal
● Sub-sandbox
● Self-updates

Plumbing issues

Tagging containers
● Set Immutable ID on new container
● Portals need to identify containers

– Given a unix domain socket fd

● Current options
– SO_PEERCREDS

● pid, uid, gid

– SO_PEERSEC
● SELinux label, AppArmour context, ...

– CGroup path

● Now: SO_PEERCREDS → pid → /proc/$PID/root/.flatpak-info
– Pids are racy
– Disallows recursive namespace use

Abstract sockets
● Bound to network namespace
● Broken scenarios

– Network access, but not all abstract sockets
– No network, but some abstract socket

● Abstract sockets are lame
– Limited path length
– Can’t rearrange in namespace

● Can everyone stop using them!
– Just use regular sockets in /run

Userspace network filtering
● Currently all or nothing
● Want in-between option

– NAT:ed
– IP range filtering
– …

● Current options
– slirp4netns
– CGroup eBPF socket filter

● Needs root

Want unprivileged overlayfs
● Not currently possible
● Mainly for building

fs-verity
● Immutable files
● Merkle tree allows signatures
● Very good match for OSTree
● Needs more fs support

CGroups v2
● Seems like it could be used for flatpak
● Needs research

Dynamic device nodes
● Want device type filtering

– “All joysticks”
– “All usb devices with this vendor/class”
– Dynamic

● Currently only possible if in subdir
– /dev/dri

● Want better approach?

Proxy-less dbus filtering
● Don’t want proxy

– Less processes
– Less copies

● Filter in the bus itself
● dbus-daemon implementation:

– https://gitlab.freedesktop.org/dbus/dbus/-/issues/185

– Status
● WIP
● No updates in years

● Other implementations
– dbus-broker?

https://gitlab.freedesktop.org/dbus/dbus/-/issues/185

PipeWire
● New video & audio daemon
● Replaces PulseAudio
● Built with sandboxing in mind
● Needs work to integrate as portal

GPU drivers
● Needs to match kernel version

– Nvidia – hard requirement
– Mesa/DRM – soft requirement

● ABI issues makes it hard to use host driver
– libcapsule / dlmopen

● DRI kernel ABI needs to be backwards compat

Questions
● Links:

– https://flatpak.org/

– https://github.com/flatpak/flatpak/

– https://github.com/ostreedev/ostree

● Reaching us

– alexander.larsson@gmail.com

– flatpak@lists.freedesktop.org

– #flatpak on freenode

https://flatpak.org/
https://github.com/flatpak/flatpak/
https://github.com/ostreedev/ostree
mailto:alexander.larsson@gmail.com
mailto:flatpak@lists.freedesktop.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

