
COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.

An introduction of vector support in RISC-V Linux

20200824
Greentime Hu <greentime.hu@sifive.com>
 Vincent Chen <vincent.chen@sifive.com>

mailto:greentime.hu@sifive.com
mailto:vincent.chen@sifive.com

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.222

• What is riscv vector and its current status

• User space
– What ifunc is and how ifunc work

– What should glibc/libgcc port for vector

• Kernel space
– What should kernel port for vector

– sigcontext/ptrace/context switch

• Conclusions

• References

Outline

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.333

• Quote from The RISC-V Reader
– Data-level parallelism
– Application can compute plenty of data concurrently
– A more elegant SIMD(single instruction multiple data)
– The size of the vector registers is determined by the implementation,

rather than backed into the opcode, as with SIMD
• The programmer can take advantage of longer vectors without rewriting the

code
• Vector architectures have fewer instructions than SIMD architectures

• What is the CSR vlenb
– The XLEN-bit-wide read-only CSR vlenb holds the value VLEN/8, i.e., the vector

register length in bytes.
– The value in vlenb is a design-time constant in any implementation.
– ex: 512bits vlen => 512/8 = 64 bytes => 64 * 32registers = 2KB

What is riscv vector

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.444

• Spec
– v0.9 is released

• glibc
– RFC Patch is sent

• ifunc
• Align signcontext header with Linux kernel

– WIP
• memcpy/memset/memcmp/memmove/strcmp/strlen...
• setcontext/getcontext/swapcontext

• Linux kernel
– V6 RFC patchset based on 0.9 spec is sent
– WIP

• kernel mode vector
• lazy vector

• Tested in spike and QEMU by
– user space vector testcases
– kernel mode XOR optimized by vector instructions
– stress-ng

What is current riscv vector status

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.555

Vector porting overview

Glibc
a.out memset() resolver()

memset()

context switch

memset_vext()

signal handler()

setup_sigcontext

signal.h sigcontext.h

GDB

ptrace
syscall

vector context
information

user
space

kernel
space

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.666

• Our goals
• Integrate the functions optimized by V-extension to the Glibc
• Make the existing glibc feature work

• Integrate the functions optimized by V-extension

– memcpy, memset, strcmp, … could be optimized by V-extension

– How to use the optimized functions without sacrificing the Glibc portability?
• Using GNU indirect function support(a.k.a IFUNC)

– make Glibc follow user’s rule to select an appropriate function
based on the hardware capability in runtime.

• Add GNU indirective function (a.k.a IFUNC) support to RISCV

– Thanks Nelson Chu for adding IFUNC support to GCC and Binutils

What should glibc/libgcc port for vector

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.777

• Make the existing Glibc feature work
– V-extension means new instructions + new registers

• Most works is to address the ABI issues such as calling convention
– Between two binaries in User space
– Between glibc and kernel

Make the existing Glibc feature work

 A. ABI issues in two user space binaries
• Check according to the calling convention in v0.9 spec
• Needed to add save/restore mechanism for VCSR in setcontext,

getcontext and swapcontext.

A.o B.o Glibc

Kernel

a.out

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.888

Make the existing Glibc feature work

 B. ABI issues in kernel and glibc
• Exception, Interrupt

– Kernel needs to ensure the correctness of vector context
• Signal handler

– The caller of signal handler caller is kernel
– Glibc provides user with some information to handle the signal

» struct sigcontext
» signal stack

A.o B.o

Kernel

a.out

Int/exception signal

Signal
handler

glibc

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.999

• A general flow for addressing a signal

Make the existing Glibc feature work

set signal handler
to $sepc

setup signal
context

signal handler

user spacekernel space

user process
stack

struct
sigcontext

void function_bt(int sig,
 siginfo_t *sig_info,
 struct ucontext* ctx)

{ struct sigcontext
 *sc = &ctx->uc_mcontext
 unsigned long ra = sc->gregs[1];
 printf("bt[1]: %lx\n", ra);
}

Kernel uses “struct sigcontext” defined
 in kernel sigcontext.h to store the
context

User uses “struct sigcontext” defined in
Glibc sigcontext.h to access the context

The “struct sigcontext” used by store and load
is defined in different sigcontext.h

Signal stack

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.101010

• We need to add the vector registers to “struct sigcontext” in Linux and Glibc
– Every time we support a new extension, we need to modify the

"struct sigcontext" in Linux and Glibc.

• Could we make glibc include kernel sigcontext.h?
– Yes, the Glibc’s generic sigcontext.h already did.
– However, it may cause ABI incompatibility in RISC-V user program

Make the existing Glibc feature work

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.111111

• the content of “struct sigcontext” in Glibc is different from the “struct
sigcontext” in kernel
– Same memory layout, but different element name

Make the existing Glibc feature work

Glibc

Linux kernel

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.121212

• ABI incompatibility in RISC-V user program
– The libgcc unwinding scheme cannot work

• It uses glibc sigcontext to get the return address from signal stack
• LLVM does’t have this issue because it directly access the sigcontext via

memory offset
– Build multiple images via OpenEmbedded to evaluate the impacts in

ECO system (Thanks to Jim Wilson’s suggestions)
• No build error is encountered.
• Now may be a good moment to do this

– Align the Glibc “struct sigcontext” with kernel
» [RFC PATCH] riscv: remove riscv-specific sigcontext.h

Make the existing Glibc feature work

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.131313

user process
stack

Make the existing Glibc feature work

set sepc to
signal handler

setup signal
context

signal handler

user spacekernel space

struct
sigcontext

• A general flow for addressing a signal

Memory

~
~

~
~

local
variable

function
call

int main() {

char *stack =
malloc(SIGSTKSZ);

stack_t ss = {
.ss_size = SIGSTKSZ,
.ss_sp = stack, };

struct sigaction sa = {
.sa_handler = handler,
.sa_flags = SA_ONSTACK };

sigaltstack(&ss, 0);

}

SIGSTKSZ

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.141414

• The signal stack size >= sizeof (struct sigcontext)

 + sizeof (local variables and function call)
– POSIX defines two constant value for user to allocate a signal stack

• MINSIGSTKSZ : The minimum stack size for a signal handler
 >= sizeof (struct sigcontext)

• SIGSTKSZ: It is a system default specifying the stack size that
 would be used to cover the usual case
 (= 3~4 *MINSIGSTKSZ for most architectures)

• However, the theoretical maximum VLEN is 2^(XLEN -1)
– Size of (struct sigcontext) is an astronomical number as well

Make the existing Glibc feature work

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.151515

• How to determine MINSIGSTKSZ and SIGSTKSZ?
– Assumed maximum VLEN

• To meet the current mechanism
• Max VLEN = 4096 bit

– Kernel pass precise MINSIGSTKSZ to User space via auxiliary entry
• Reference to ARM64 implementation

– Create a new auxiliary entry to pass precise MINSIGSTKSZ to User
• Avoid wasting memory if the real VLEN < max VLEN
• Break the limitation of “Max VLEN = 4096 bit”
• [RFC patch] riscv: signal: Report signal frame size to userspace via auxv

Make the existing Glibc feature work

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.161616

• Conclusion
– Add IFUNC support

• [RFC PATCH] riscv: Add support for STT_GNU_IFUNC symbols

– Add save/restore mechanism for VCSR in setcontext/getcontext/swapcontext

– Align the Glibc “struct sigcontext” with kernel
• [RFC PATCH] riscv: remove riscv-specific sigcontext.h

– A mechanism to make user get appropriate MINSIGSTKSZ

• [RFC PATCH] riscv: signal: Report signal frame size to userspace via auxv

What should glibc/libgcc port for vector

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.171717

• The most important parts
– riscv: Add vector struct and assembler definitions
– riscv: Add sigcontext save/restore for vector
– riscv: Add ptrace vector support
– riscv: Add task switch support for vector

• And others
– riscv: signal: Report signal frame size to userspace via auxv
– riscv: Reset vector register
– riscv: Add has_vector/riscv_vsize to save vector features.
– riscv: Add vector feature to compile
– riscv: Add new csr defines related to vector extension
– riscv: Extending cpufeature.c to detect V-extension
– riscv: Rename __switch_to_aux -> fpu
– riscv: Separate patch for cflags and aflags
– ptrace: Use regset_size() for dynamic regset

What should kernel port for vector

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.181818

struct sigcontext {

 struct user_regs_struct sc_regs;

 union __riscv_fp_state sc_fpregs;

 struct __riscv_v_state sc_vregs;

};

ucontext, sigcontext and vector structure

struct user_regs_struct
{

 unsigned long pc;

 unsigned long ra;

 unsigned long sp;

 unsigned long gp;

 unsigned long tp;

 unsigned long t0;

 unsigned long t1;

 unsigned long t2;

 unsigned long s0;

 ...

 unsigned long t3;

 unsigned long t4;

 unsigned long t5;

 unsigned long t6;

};

struct __riscv_f_ext_state {

 __u32 f[32];

 __u32 fcsr;

};

struct __riscv_d_ext_state {

 __u64 f[32];

 __u32 fcsr;

};

struct __riscv_q_ext_state {

 __u64 f[64];

 __u32 fcsr;

 __u32 reserved[3];

};

union __riscv_fp_state {

 struct __riscv_f_ext_state f;

 struct __riscv_d_ext_state d;

 struct __riscv_q_ext_state q;

};

struct ucontext {

 unsigned long uc_flags;

 struct ucontext *uc_link;

 stack_t uc_stack;

 sigset_t uc_sigmask;

 __u8 __unused[1024 / 8 - sizeof(sigset_t)];

 struct sigcontext uc_mcontext;

};

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.191919

struct sigcontext {

 struct user_regs_struct sc_regs;

 union __riscv_fp_state sc_fpregs;

 struct __riscv_v_state sc_vregs;

};

ucontext, sigcontext and vector structure

struct user_regs_struct
{

 unsigned long pc;

 unsigned long ra;

 unsigned long sp;

 unsigned long gp;

 unsigned long tp;

 unsigned long t0;

 unsigned long t1;

 unsigned long t2;

 unsigned long s0;

 ...

 unsigned long t3;

 unsigned long t4;

 unsigned long t5;

 unsigned long t6;

};

struct __riscv_f_ext_state {

 __u32 f[32];

 __u32 fcsr;

};

struct __riscv_d_ext_state {

 __u64 f[32];

 __u32 fcsr;

};

struct __riscv_q_ext_state {

 __u64 f[64];

 __u32 fcsr;

 __u32 reserved[3];

};

union __riscv_fp_state {

 struct __riscv_f_ext_state f;

 struct __riscv_d_ext_state d;

 struct __riscv_q_ext_state q;

};

struct ucontext {

 unsigned long uc_flags;

 struct ucontext *uc_link;

 stack_t uc_stack;

 sigset_t uc_sigmask;

 __u8 __unused[1024 / 8 - sizeof(sigset_t)];

 struct sigcontext uc_mcontext;

};

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.202020

vector structure

sigcontext layout in kernel sigcontext layout In user space

sc_regs

sc_fpregs

sc_vregs

v0
v1
v2
v3
v4
v5
v6
v7
v8
v9
...
v31

sc_regs

sc_fpregs

sc_vregs

v0
v1
v2
v3
v4
v5
v6
v7
v8
v9
...
v31

datap = kmalloc() datap = sc_vregs+1

struct __riscv_v_state {
 __u32 magic;
 __u32 size; /* size of all vector registers */
 unsigned long vstart;
 unsigned long vl;
 unsigned long vtype;
 unsigned long vcsr;
 void *datap;
#if __riscv_xlen == 32
 __u32 __padding;
#endif
} ;

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.212121

• sigcontext.h

– void sighandler(int sig, siginfo_t sif, ucontext_t ctx)

• Kernel has to save all registers(including vector registers) to ucontext_t in
setup_sigcontext()

– regs->a0 = ksig->sig; /* a0: signal number */

– regs->a1 = (unsigned long)(&frame->info); /* a1: siginfo pointer */

– regs->a2 = (unsigned long)(&frame->uc); /* a2: ucontext pointer */

• Then go to user space sighandler()

– Sigreturn syscall

• Kernel has to restore all the registers of ucontext_t to CPU

• Then resume to user program

What should kernel do for signal handler

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.222222

• Use ptrace syscall to get vector registers
– User have to allocate a space in v_iovec.iov_base for vector csr and registers

• ptrace(PTRACE_GETREGSET, child, NT_RISCV_VECTOR, &v_iovec);

• ptrace(PTRACE_SETREGSET, child, NT_RISCV_VECTOR, &v_iovec);

• Kernel space to handler ptrace syscall

– It copied struct __riscv_v_state and its datap to/from v_iovec.iov_base

• riscv_vr_get() => copy to user

• riscv_vr_set() => copy from user

What should Linux kernel do for ptrace syscall porting

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.232323

• From task_struct to __riscv_v_vstate

struct task_struct task {

...

struct thread_struct thread {

…
struct __riscv_d_ext_state fstate;

struct __riscv_v_state vstate; // Save all vector context here

}

}

• Only partial lazy mechanism for saving or restoring vector registers
– When to save

• If this process is going to be scheduled out and its SR_VS is DIRTY
– save vector registers to memory, set SR_VS to CLEAN

– When to restore
• If this process is going to be scheduled in and its SR_VS is not OFF

– restore vector registers from memory, set SR_VS to CLEAN

Context switch for vector

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.242424

• Major features are implemented with Spec v0.9 which is very close to v1.0

• WIP features

– kernel mode vector

– kernel mode XOR optimization

– user mode memcpy/memset optimization

– lazy vector registers save and restore

• Future work

– Native gdb to support vector

Conclusions

COPYRIGHT 2020 SIFIVE. ALL RIGHTS RESERVED.252525

• v-spec.adoc
• Patterson, David. & Waterman, Andrew. (2017). The RISC-V Reader.

References

https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc

