Western Digital.

RISC-V Hypervisor Extension

Where are we ? What next ?

Anup Patel <anup.patel@wdc.com>

Western Digital System Software Research

Linux Plumbers 2020

Outline

- RISC-V H-Extension Status
- KVM RISC-V
- RISC-V Nested Virtualization
- Questions

RISC-V H-Extension Status

H-Extension specifications close to freeze state

- The hypervisor specific ISA in RISC-V is called RISC-V H-Extension
- Key contributors for initial RISC-V H-Extension drafts:
 - Andrew Waterman (SiFive), John Hauser, and Paolo Bonzini (RedHat)
- RISC-V H-Extension draft release history:
 - v0.1-draft was released on 9th November 2017
 - ... few more draft releases ...
 - v0.4-draft was released on 16^{th} June 2019
 - v0.5-draft released on 30th October 2019
 - v0.6-draft released on 8th February 2020
 - v0.6.1-draft released on 5^{th} May 2020

Most likely v0.6.1-draft is the last draft release

- Western Digital has been co-developing RISC-V H-Extension since v0.4-draft:
 - QEMU (Emulator), Xvisor (Type-1 hypervisor), KVM (Type-2 hypervisor)

KVM RISC-V

The RISC-V port of the KVM hypervisor

KVM RISC-V: High-level View

High-level view of KVM RISC-V

KVM RISC-V: Current State

What have we achieved so far?

• Key Aspects:

- Supports H-Extension v0.6.1 draft specification
- No RISC-V specific KVM IOCTL
- Supports both RV32 and RV64 Hosts
- Minimal world-switch and full world-switch via vcpu_load()/vcpu_put()
- Floating point unit lazy save/restore
- KVM ONE_REG interface for user-space
- Timer and IPI emulation in kernel-space
- PLIC emulation is done in user-space
- Hugepage support
- SBI v0.2 interface for Guests
- Unhandled SBI calls forwarded to KVM userspace
- Vhost support using ioeventfd

New addition compared to LPC2019

KVM RISC-V: Patches

Where are the patches ?

The state of KVM RISC-V patches:

- First version of KVM RISC-V series was posted on July 29th 2019
- Most of the patches were Reviewed-n-Acked in v6 of KVM RISC-V series
- Currently, we are at v13 of KVM RISC-V series which was sent on July 10^{th} 2020

Patches blocked on KVM RISC-V patches:

- KVM RISC-V vhost support using ioeventfd (RFC v1 sent on July 24th 2020)
- KVM RISC-V SBI v0.2 support (RFC v1 sent on August 3rd 2020)
- KVMTOOL patches (RFC v4 sent on July 10th 2020)
- QEMU KVM patches (RFC v2 sent on April 11th 2020)

Important Links:

- <u>https://github.com/kvm-riscv/linux.git</u> (KVM RISC-V repository)
- <u>http://lists.infradead.org/mailman/listinfo/kvm-riscv</u> (mailing List)
- <u>https://github.com/kvm-riscv/howto/wiki</u> (wiki)

KVM RISC-V: To-Do List

What's next ?

- Stage 2 dirty page logging (work already in-progress)
- Nested virtualization (work already in-progress)
- Trace points
- KVM unit test support
- Virtualize vector extensions
- Guest/VM migration support
- Allow 32bit Guests on 64bit Hosts (defined in RISC-V spec)
- Allow big-endian Guests on little-endian Hosts and vice-versa (defined in RISC-V spec)
- Anything else ?

RISC-V Nested Virtualization

Nested virtualization using RISC-V H-extension

RISC-V Nested: High-level View

Software layers involved in RISC-V Nested Virtualization

RISC-V Nested: Hypervisor CSR and Instructions

Virtualizing hypervisor CSRs and instructions for Guest Hypervisor

- H<xyz> and VS<xyz> CSRs are Hypervisor CSRs
- HFENCE and HLV/HSV instructions are Hypervisor Instructions
- Host hypervisor (HS-mode) will handle hypervisor CSR/instruction traps as follows:
 - Trap from virtual-HS-mode: Emulate hypervisor CSR (or Instruction) for Guest Hypervisor
 - Trap from virtual-VS/VU-mode: Redirect hypervisor CSR (or Instruction) trap to Guest Hypervisor
 - Trap from virtual-U-mode: Redirect hypervisor CSR (or Instruction) trap to Guest Hypervisor as illegal instruction trap

RISC-V Nested: WFI and ECALL Instructions

Virtualizing WFI and ECALL instructions for Guest Hyperviosr

- Host hypervisor (HS-mode) will handle WFI traps as follows:
 - Trap from virtual-HS-mode: Emulate WFI for Guest Hypervisor
 - Trap from virtual-VS-mode with virtual-HSTATUS.TW == 1: Redirect WFI trap to Guest Hypervisor
 - Trap from virtual-VS-mode with virtual-HSTATUS.TW == 0: Skip WFI instruction
 - Trap from virtual-VU-mode: Redirect WFI trap to Guest Hypervisor
 - Trap from virtual-U-mode: Redirect WFI trap to Guest Hypervisor as Illegal instruction trap
- Host hypervisor (HS-mode) will handle supervisor ECALL traps as follows:
 - Trap from virtual-HS-mode: Treat it as SBI call from Guest Hypervisor
 - Trap from virtual-VS-mode: Redirect supervisor ECALL trap to Guest Hypervisor

RISC-V Nested: Shadow G-Stage

Emulating G-Stage Translation for Guest Hypervisor

• Host Hypervisor need two G-Stage Page Tables:

- Normal G-Stage page table
 - Translates Guest Physical Address (GPA) for virtual-HS/U-mode
 - One Normal G-Stage page table for Guest Hypervisor
- Shadow G-Stage page table
 - Translates Guest Physical Address (GPA) for virtual-VS/VU-mode
 - Separate Shadow G-Stage page table for each VCPU of Guest Hypervisor
 - Software walk of Guest Hypervisor G-Stage required for mappings in Shadow G-Stage
 - Inject Guest page faults to Guest Hypervisor when PTE is missing in Guest Hypervisor G-Stage
 - Guest Hypervisor HFENCE instruction will remove mappings from Shadow G-Stage
- Normal and Shadow G-Stage share same VMID assigned for Guest/VM

RISC-V Nested: Nested World-Switch

Additional world-switch for achieving nested virtualization

- Nested world-switch required when switching between Guest Hypervisor (virtual-HSmode) and Guest Linux (virtual-VS/VU-mode)
- Guest Hypervisor (virtual-HS-mode) to Guest Linux (virtual-VS/VU-mode) done when:
 SRET instruction executed by Guest Hypervisor with virtual-HSTATUS.SPV == 1
- Guest Linux (virtual-VS/VU-mode) to Guest Hypervisor (virtual-HS-mode) done when:
 - Injecting interrupt to Guest Hypervisor
 - Injecting Guest page faults to Guest Hypervisor
 - Redirecting/injecting virtual instruction trap to Guest Hypervisor

Questions ?

Western Digital.

Backup

4

1

RISC-V H-Extension

The RISC-V Hypervisor Extension

RISC-V H-Extension: Privilege Mode Changes

Decreasing

New privilege modes for guest execution

- Suitable for both Type-1 (Baremetal) and Type-2 (Hosted) hypervisors
- HS-mode for Hypervisor
 - S-mode with hypervisor capabilities
- Two additional modes for Guest:
 - VS-mode = Virtualized S-mode
 - VU-mode = Virtualized U-mode
- In HS-mode (V=0)
 - "s<xyz>" CSRs point to standard "s<xyz>" CSRs
 - "h<xyz>" CSRs for hypervisor capabilities
 - "vs<xyz>" CSRs contains VS-mode state
- In VS-mode (V=1)
 - "s<xyz>" CSRs point to virtual "vs<xyz>" CSRs

RISC-V H-Extension: Two-stage MMU

Hardware optimised guest memory management

One-Stage MMU for HS/U-mode

- HS-mode page table (HS-Stage)
 - Translate hypervisor Virtual Address (VA) to Host Physical Address (HPA)
 - Programmed by Hypervisor using satp CSR
- Two-Stage MMU for VS/VU-mode
 - VS-mode page table (VS-Stage)
 - Translates Guest Virtual Address (GVA) to Guest Physical Address (GPA)
 - Programmed by Guest using satp (aka vsatp) CSR
 - HS-mode guest page table (G-Stage)
 - Translates Guest Physical Address (GPA) to Host Physical Address (HPA)
 - Programmed by Hypervisor using hgatp CSR
- Format of all above page tables is same

RISC-V H-Extension: Hypervisor CSRs

More control registers for virtualising S-mode

HS-mode CSRs for hypervisor capabilities	
hstatus	Hypervisor Status
hideleg	Hypervisor Interrupt Delegate
hedeleg	Hypervisor Trap/Exception Delegate
hie	Hypervisor Interrupt Enable
hgeie	Hypervisor Guest External Interrupt Enable
htimedelta	Hypervisor Guest Time Delta
hcounteren	Hypervisor Counter Enable
htval	Hypervisor Trap Value
htinst	Hypervisor Trap Instruction
hip	Hypervisor Interrupt Pending
hvip	Hypervisor Virtual Interrupt Pending
hgeip	Hypervisor Guest External Interrupt Pending
hgatp	Hypervisor Guest Address Translation

HS-mode CSRs for accessing Guest/VM state **Guest/VM Status** vsstatus Guest/VM Interrupt Enable vsie vsip Guest/VM Interrupt Pending Guest/VM Trap Handler Base vstvec Guest/VM Trap Progam Counter vsepc Guest/VM Trap Cause vscause Guest/VM Trap Value vstval vsatp Guest/VM Address Translation vsscratch Guest/VM Scratch

New CSRs based on Western Digital feedback

RISC-V H-Extension: MMIO & Interrupts

Guest MMIO and Interrupts virtualization

- Guest virtual interrupts are injected by updating hvip CSR from HS-mode
 - hvip.VSEIP bit for Hypervisor injected virtual external interrupt
 - hvip.VSTIP bit for Hypervisor injected virtual timer interrupt
 - hvip.VSSIP bit for Hypervisor injected virtual inter-processor interrupt
- Virtual timer and inter-processor interrupts injected based on SBI calls from Guest
- Hypervisor can trap-n-emulate Guest MMIO using HS-mode guest page table
 - Software emulated PLIC
 - VirtIO devices
 - Other software emulated peripherals

RISC-V H-Extension: Future Work

What next in RISC-V specifications for virtualization ?

• RISC-V H-Extension specification:

- Optional acceleration for nested virtualization
- Optional acceleration for G-stage dirty page tracking
- RISC-V SBI specification:
 - SBI extension for guest time scaling
 - SBI extension for para-virt steal time accounting
- New RISC-V interrupt controller specification with virtualization support
- New RISC-V IOMMU specification
- Any thing else ??