
Measuring Kernel Compile
Times w/ Clang

Linux Plumbers Conf 2020 - LLVM MC
Nathan Chancellor, Nathan Huckleberry

Benchmarking GCC vs. LLVM

● Tests were conducted using hyperfine to build kernels (5.8.1) in a loop with
both GCC 10.2.0 and several versions of LLVM at a450654a52874 (11.0.0
prerelease).

● TL;DR: GCC always beats LLVM for arm64 and x86_64, even when LLVM is
compiled with LTO and PGO. LLVM needs to be compiled with PGO to build
32-bit ARM faster than GCC.

● Full results available on GitHub along with the testing scripts.

https://github.com/sharkdp/hyperfine
https://github.com/llvm/llvm-project/commit/a450654a52874b094c264e0366c31126c03fdf2d
https://gist.github.com/nathanchance/3ac507d20850a02172a083148809f63b
https://github.com/nathanchance/tc-build/tree/14611ae3d6280907f18bbb0b07eccca854aba285/benchmark

Basic measurements

$ make CC="time <compiler>" &> log_for_post_processing.txt

Profiling

Linux Perf - Sampling based profiling

● Useful for finding functions that are generally slow
● Many of the top functions are known to be slow and are hard to optimize

Perfetto - Event based profiling

● Records time spent in frontend vs backend
● Useful for finding compilation outliers (weird frontend/backend ratio)
● Fixing uncommonly occurring slowdowns gives smaller speedups

Tracing whole builds with perf

$ echo 0 | sudo tee /proc/sys/kernel/kptr_restrict \

 /proc/sys/kernel/perf_event_paranoid

$ perf record -e cycles:pp --call-graph lbr make LLVM=1 -j71

$ perf report --no-children --sort=dso,symbol

Low hanging fruit identified

Opportunities for improvement in LLVM found by compiling the Linux kernel:

● Redundant work inline asm statements (~13% of a build)
○ Fixed in clang-11.

● Expensive calculations tracking macro arguments source locations.
○ Particularly when GNU C statement expressions are passed to macros.
○ TODO: fix

Maybe not surprising it took building the Linux kernel to find these?

Perfetto RFC

Perfetto-instrumented Clang https://reviews.llvm.org/D82994

● Records time spent in frontend vs time spent in backend

Built-in Query Engine - Useful for finding outliers

● Million character macro expansions
● Repeated inlining of large functions

Kernel builds:

X86_64: https://ui.perfetto.dev/#!/?s=bbbcbde1daa19cfe7c5746671c7cb6986eb605aa811be6f5cc24d9b853a8c

Arm64: https://ui.perfetto.dev/#!/?s=aba8804ce98f5467fd46a471b7581e6515b9d24c6aed0852f7f99cda7e2c6e2

https://reviews.llvm.org/D82994
https://ui.perfetto.dev/#!/?s=bbbcbde1daa19cfe7c5746671c7cb6986eb605aa811be6f5cc24d9b853a8c
https://ui.perfetto.dev/#!/?s=aba8804ce98f5467fd46a471b7581e6515b9d24c6aed0852f7f99cda7e2c6e2

Future work?

● Keeping track of major regressions in compile time (something like
llvm-compile-time-tracker but specifically for the kernel)

● Analyze traces in depth

http://llvm-compile-time-tracker.com/

