
Partial cache flush use-cases
for DMA-BUFs

Codec2 use-case in Android 11

● Before Android 11, buffer allocation was done by codecs.
● For streaming applications apps,
○ downloaded the content,
○ parsed it, and
○ copied the data to be decoded into buffers allocated by codec and queued them to be decoded.

Codec2 use-case in Android 11

● Before Android 11, buffer allocation was done by codecs.
● For streaming applications apps,
○ downloaded the content,
○ parsed it, and
○ copied the data to be decoded into buffers allocated by codec and queued them to be decoded.

● Android R allows codecs to be configured to accept buffers allocated by apps.
○ Apps allocate the buffer(or system may recycle one of the previously allocated buffers),
○ map the buffer and download content into it,
○ parse it and queue the desired range of the buffer to the codec.
○ The component receives the handle to the entire buffer and the offset and size that denotes the

range.
○ The component must now do a cache flush for the range before proceeding to read the range

and processing it.

https://developer.android.com/reference/android/media/MediaCodec#CONFIGURE_FLAG_USE_BLOCK_MODEL

Codec2 use-case in Android 11

Codec2 use-case in Android 11

● Eliminates the need for a separate buffer to hold the downloaded content.
● Savings add up for 4K/8K content.

Other use-cases

● Metadata flushing.
● Frame Buffer Compression metadata headers which indicates compression format for block.
● Memset insufficient to reset the metadata.
● Need to write initialization values into the header and cache flush.
● Potential performance improvement with partial cache flush.

Solution to allow parallel use of different regions
on the same buffer

○ Add begin_cpu_access_partial() and
end_cpu_access_partial() hooks to dma_buf_ops.

○ Similar to begin/end_cpu_access() but with
additional offset and length parameters to specify
range

○ AOSP implementation here
○ Add new DMA_BUF_IOCTL_SYNC_RANGE ioctl

that takes start/end ranges

https://android-review.googlesource.com/c/kernel/common/+/1014420/5

Similarly for the proposed device usage
annotations..

● Add begin_device_access_partial and
end_device_access partial hooks to dma_buf_ops.

● Solution similar to range locks on files.

Challenges
● Complicates the question of buffer ownership.
● Ownership needs to be tracked range-wise.
● Complicates the proposed lazy-flushing

optimization.

● Any other use-cases?
● Alternate solutions?
● Deal-breakers?

Discussion topics:

Thank you!

Backup Slides

Related optimization

● IOCTL to only cache sync the memory mapped by the CPU (codeaurora implementation by Liam
Mark here).

https://source.codeaurora.org/quic/la/kernel/msm-4.19/tree/drivers/dma-buf/dma-buf.c?h=LU.UM.1.2.1.r1.2#n1032

