
fw_devlink
Extracting and using device dependencies 
from firmware
Saravana Kannan



Simplified Boot Sequence - Fully Modular Kernel

At what point can the kernel 
safely clean up the 
hardware state? For 
example, turn off all 
regulators not explicitly 
requested to be kept ON by 
consumers.

Kernel cleans up 
hardware state

Module load ordering 
doesn’t guarantee probe 
ordering. For example: 
probe deferrals, one 
module containing multiple 
drivers, etc.

Kernel probes 
devices

Only thing done upto this 
point is arch specific core 
init (for example, ARM64 
Timer, GIC). 

Core kernel init

For example, a HW reset 
might turn ON a few power 
supplies to the SoC, clocks 
and interconnects (so that 
it can boot).

Bootloader might turn on 
display and UART and any 
clocks and regulators 
needed for them.

Bootloader/HW reset 
turns on devices

Bootloader Late initcall 
sync

Init loads 
modules ??

LPC 2019 slides and video

https://linuxplumbersconf.org/event/4/contributions/402/attachments/320/544/Solving_issues_associated_with_modules_and_supplier-consumer_dependencies.pdf
https://youtu.be/f2C-gA8jEyY?list=WL&t=2066


fw_devlink and sync_state
fw_devlink - Derive device 
dependencies from firmware

● Parses firmware to create device links 
between devices

● Doesn’t depend on drivers
● Avoids unnecessary probe deferrals

sync_state - Per-device “safe to clean 
up” callback

● sync_state() callback is called after ALL 
the consumers of a device have probed

● Uses device links to track probe 
completion of consumers



60+ patches merged upstream since LPC 2019

Added support for several modes:

● off = doesn’t parse firmware
● permissive [default] = doesn’t affect probes
● on = enforces probe and suspend/resume 

ordering
● rpm = on + enforces run time pm ordering

Improved cycle handling.

Significantly faster firmware parsing.

Device link info now exposed in sysfs:
● /sys/class/devlink
● /sys/devices/.../<device>/[supplier|consumer]:*

fw_devlink: upstream status



fw_devlink DT support

Currently supports the following 18 devicetree bindings:

● hwlocks
● extcon
● interrupts-extended
● nvmem-cells
● phys
● wakeup-parent
● pinctrl-*
● -supply (regulators)
● -gpio and -gpios (gpios)

● clocks
● interconnects
● iommus
● iommu-map
● mboxes
● io-channel
● interrupt-parent
● dmas
● power-domains



PSCI CPUidle driver support added by Ulf 
Hansson

Interconnect framework support in progress by 
Georgi Djakov

Regulator framework patches under discussion

sync_state(): upstream status



Device dependency graphs!



Laptop (without fw_devlink)

Note: Does NOT include “class” devices because they never bind to drivers



Mobile device (without fw_devlink)

Note: Does NOT include “class” devices because they never bind to drivers



Mobile device (with fw_devlink)

Note: Does NOT include “class” devices because they never bind to drivers



Discussion slides



Discussion topics
sync_state() tracking granularity

fw_devlink=on by default



Concern: 

If a device (Eg: PMIC) provides multiple resources (Eg: 
regulators, gpios, etc) and at least one of its 
consumers doesn’t probe, then all the regulators left on 
by the bootloader:

● Cannot be cleaned up.
● Some drivers use regulator_get() on these regulators, 

but expect exclusive access in some systems. They 
won’t have exclusive access till sync_state() is called.

Thoughts:

● Resource level tracking.
● Kernel config/command line parameter to disable 

keeping resources on (Eg: regulator, clocks, etc) till 
sync_state().

● Command line timeout after which sync_state() is 
always called.

● Other options?

sync_state() tracking



Mobile device (with fw_devlink + per-regulator links)

Note: Does NOT include “class” devices because they never bind to drivers



fw_devlink=on by default

Why?
● Can significantly reduce deferred probing in 

its current state

● No more _initcall chicken/Makefile ordering

● Getting to topological probe ordering seems 
feasible.

● Significantly simplifies module load ordering

● In the long run, it could allow simplifying 
deferred probe handling in drivers.



fw_devlink=on by default

Problems
fw_devlink=on can block probing for a few 
corner cases

● Cycles in DT which can’t be broken with 
logic.

● Devices with “compatible” property with 
drivers that parse and “probe” without using 
a struct device.

○ Not talking about early devices like 
GIC/Timer.



Thoughts?
Need to be backward compatible with existing 
DT.

Therefore:

● Stop blocking probing if !CONFIG_MODULES 
&& deferred probe workqueue is done.

● If CONFIG_MODULES, use timeout 
command line param set to 30s by default.

Platforms without this corner case/Future 
platforms can still do full enforcement:

● Disable timeout (timeout=-1).

● Disambiguate cycles in DT.

● Fix drivers to use device driver core.

fw_devlink=on by default



Disambiguate cyclic-dependency in DT

Cycle uncertainty
sdhci: sdhci@xxxx{
compatible = "acme,sdhci";
...
phys = <&emmc_phy>;

}

emmc_phy: phy@yyyy {
compatible = "acme,emmc-phy";
...
clocks = <&sdhci>;

}

No cycle uncertainty
sdhci: sdhci@xxxx{
compatible = "acme,sdhci";
...
phys = <&emmc_phy>;

}

emmc_phy: phy@yyyy {
compatible = "acme,emmc-phy";
...
init_optional { // Name has no meaning here
clocks = <&sdhci>;

}
}



Thank you!


