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Requirements

● Read only files, read/write file 
system

● Files can be delivered at the block 
level incrementally and out of order

● Reads from undelivered parts of a 
file trigger a notification to user 
space, holding the read until fulfilled 
or timed out

● File contents can be compressed
● Files are verified on read
● No limit on file count



Implementation

● Stacking file system

● Each file has a corresponding file in the 
underlying file system

● Directory operations (move, delete, link, 
etc.) are passthrough

● Reads interpret the underlying file and 
return the correct data

● Writes are interpreted specially and 
provide the channel for incremental 
delivery

● An index directory exists to manage    
incremental delivery

● Two command files and two IOCTLs 
round out the interface



Underlying file system

incfs



Underlying file system

Identical files/directories +           
.pending_reads and .log files in root
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Directory Operations

● Most directory operations are 
simply reflected in the underlying 
file system e.g., move, link, set 
attributes

● unlink is slightly special - if after 
unlink the file has only one 
reference, it's the .index 
reference and the file is removed 
completely

● File create is blocked, because 
we need some parameters to 
create a file. Instead:



Create IOCTL struct incfs_new_file_args {
/* Id of a file to create. */
incfs_uuid_t file_id;

/* Total size of the new file. Ignored if S_ISDIR(mode). */
__aligned_u64 size;

/* File mode. Permissions and dir flag.
__u16 mode;

/* A pointer to a null-terminated relative path to the file's
 parent dir. Max length: PATH_MAX */

__aligned_u64 directory_path;

/* A pointer to a null-terminated file's name. Max length:
 PATH_MAX */

__aligned_u64 file_name;

/* A pointer to a file attribute to be set on creation. */
__aligned_u64 file_attr;

/* Length of the data buffer specified by file_attr.
 Max value: INCFS_MAX_FILE_ATTR_SIZE */

__u32 file_attr_len;

/* struct incfs_file_signature_info *signature_info; */
__aligned_u64 signature_info;

};

Create .index file and 
hard link to path
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Why .index?

● Pending read notifications have to 
say which file is being read

● But a file might be moved while the 
read is pending

● The .index directory and the 
associated xattr provide a way of 
going to and from a file 
unambiguously



Sundry

● Each block write can pass in the 
data lz4 compressed, and the 
block is then stored compressed 
and decompressed on read; blocks 
in the underlying file are therefore 
not necessarily block aligned

● There is one more ioctl, which is to 
get a file’s signature for validation

● The .log file tracks file reads 
which allows us to gather data to 
optimize the delivery of blocks



Future work

● fs-verity integration

● Mapped files. Many Android files 
are extracted from incrementally 
delivered APKs. To avoid having to 
fully download those sections of 
the APK, add an ioctl to create a 
file as a offset/size of an existing 
file

● User space control of pending read 
timeout


