
Incremental FS
Systems - Functionality Talk

Paul Lawrence
Software Engineer

Requirements

● Read only files, read/write file
system

● Files can be delivered at the block
level incrementally and out of order

● Reads from undelivered parts of a
file trigger a notification to user
space, holding the read until fulfilled
or timed out

● File contents can be compressed
● Files are verified on read
● No limit on file count

Implementation

● Stacking file system

● Each file has a corresponding file in the
underlying file system

● Directory operations (move, delete, link,
etc.) are passthrough

● Reads interpret the underlying file and
return the correct data

● Writes are interpreted specially and
provide the channel for incremental
delivery

● An index directory exists to manage
incremental delivery

● Two command files and two IOCTLs
round out the interface

Underlying file system

incfs

Underlying file system

Identical files/directories +
.pending_reads and .log files in root

File
header

Blockmap
header

Attr
header

Sig
header Attr Signature Merkle

tree
Data
block

Data
block

Data
block

File

Read Interpret

ReturnRead

Underlying file system

incfs

Append
data block

Write

OR Fill Merkle tree

Underlying file system

incfs

Read

Read No data
block

ReturnNotify
.pending_reads Write

Append
data block Interpret

Underlying file system

incfs

.index
file1

xattr ac13..
file2

xattr b1f5... dir

file3
xattr 840f...

ac13.. b1f5.. 840f..

Underlying file system

Directory Operations

● Most directory operations are
simply reflected in the underlying
file system e.g., move, link, set
attributes

● unlink is slightly special - if after
unlink the file has only one
reference, it's the .index
reference and the file is removed
completely

● File create is blocked, because
we need some parameters to
create a file. Instead:

Create IOCTL struct incfs_new_file_args {
/* Id of a file to create. */
incfs_uuid_t file_id;

/* Total size of the new file. Ignored if S_ISDIR(mode). */
__aligned_u64 size;

/* File mode. Permissions and dir flag.
__u16 mode;

/* A pointer to a null-terminated relative path to the file's
 parent dir. Max length: PATH_MAX */

__aligned_u64 directory_path;

/* A pointer to a null-terminated file's name. Max length:
 PATH_MAX */

__aligned_u64 file_name;

/* A pointer to a file attribute to be set on creation. */
__aligned_u64 file_attr;

/* Length of the data buffer specified by file_attr.
 Max value: INCFS_MAX_FILE_ATTR_SIZE */

__u32 file_attr_len;

/* struct incfs_file_signature_info *signature_info; */
__aligned_u64 signature_info;

};

Create .index file and
hard link to path

Underlying file system

incfs

Why .index?

● Pending read notifications have to
say which file is being read

● But a file might be moved while the
read is pending

● The .index directory and the
associated xattr provide a way of
going to and from a file
unambiguously

Sundry

● Each block write can pass in the
data lz4 compressed, and the
block is then stored compressed
and decompressed on read; blocks
in the underlying file are therefore
not necessarily block aligned

● There is one more ioctl, which is to
get a file’s signature for validation

● The .log file tracks file reads
which allows us to gather data to
optimize the delivery of blocks

Future work

● fs-verity integration

● Mapped files. Many Android files
are extracted from incrementally
delivered APKs. To avoid having to
fully download those sections of
the APK, add an ioctl to create a
file as a offset/size of an existing
file

● User space control of pending read
timeout

