
Integrating open source 
packages into AOSP

Laurent Pinchart (Ideas on Board Oy)
laurent.pinchart@ideasonboard.com

Karim Yaghmour (Opersys Inc.)
karim.yaghmour@opersys.com

John Stultz (Linaro)
john.stultz@linaro.org

mailto:laurent.pinchart@ideasonboard.com
mailto:karim.yaghmour@opersys.com
mailto:john.stultz@linaro.org


Android Build System 
History

2019

M
ak

e 
de

pr
ec

at
io

n 
st

ar
te

d

2015

S
oo

ng
 in

tro
du

ce
d

2020

11
/3

3 
bu

ild
 ty

pe
s 

ar
e 

ob
so

le
te

, 5
/3

3 
ar

e 
er

ro
rs

2008

H
is

to
ry

 s
ta

rts

202x

M
ak

e 
re

m
ov

al



Make-Based Builds

● Based on GNU make with TONS of Android 
rules

● Android.mk in addition of package’s native 
build system (may share code with makefiles)

● Mostly invoke Android rules, but anything is 
possible (even wrapping the native build)

Flexible☺ / Proven Tools☺ / Code duplication ☹ / Unpredictable ☹ / Slow ☹ 



Soong Build System

“The build logic is written in Go using the 
blueprint framework. Build logic receives module 
definitions parsed into Go structures using 
reflection and produces build rules. The build 
rules are collected by blueprint and written to a 
ninja build file.”



Soong Build System

Android
.bp

build
.ninja

Soong
Build
Logic
(.go)

Blueprint Ninja
Build

output

● Based on Google Blueprint 
framework with TONS of Android 
rules, and on Ninja build.



Soong-Based Builds

● Android.bp in addition of package’s native build 
system (no code sharing)

● Extensible with custom build rules in Go
● No easy way to wrap the native build (and will likely 

not be accepted in AOSP)

● Lack of bp version handling (no fwd/backwards 
compatibility)

Fast☺ / Predictable☺ / Code duplication ☹ / Custom rules in Go ☹



Open-Source Packages

● Wide variety of build systems, some of which 
share the philosophy of Soong (GYP, GN, 
Meson, …)

● Wide variety of build time dependencies

● Traditionally packaged in distributions, as 
opposed to all build in one go



Direction Mesa is likely going

Upstream is pushing to drop Android.mk, require 
Mesa to be built separately out of AOSP and 
include Mesa via binary blobs (similar to 
proprietary graphics blobs).

Not unlike how the Linux Kernel is handled.

Eases Mesa maintenance☺ / Avoids build duplication☺ / Separate build envs ☹ / Pain for testing ☹



What can be improved?

● Wrapping (some of the) native build systems 
with custom Go rules? e.g. Meson frontend in 
Go

● List of approved build time dependencies, 
maintained with the community? e.g. supported 
Python packages

● Other ideas?



What else can be 
improved?

● Helping building packages out-of-tree with their 
native build system? i.e. standard glue to point 
Meson to AOSP toolchain, headers and libs

● A manifest for each Android release to list 
recommended versions of out-of-tree 
packages?

● Other ideas?


