

Current cgroup CPU controller

● Task has sched_entity (se)
● Group has se & cfs_rq
● Task se on group cfs_rq
● Group se on parent cfs_rq, etc...
● Build up entire hierarchy on wakeup

– for_each_sched_entity() loops
– Put each se on parent’s cfs_rq, recalculate priorities

● Tear it back down when task sleeps
● Do vruntime accounting at each level, at every reschedule
● Preemption decisions re-evaluated at every level
● load_avg calculated periodically

RQ

SE RQ

SE RQ

SE RQ

SE RQ

SE

CPU cfs_rq

user.slice

user-1000.slice

user@1000.service

pulseaudio.service

pulseaudio process

New CPU controller

● All tasks on rq get same amount of vruntime
● Basic design

– All tasks in root cfs_rq
– Groups not placed on root cfs_rq
– Rate limit hierarchy walks as much as possible
– Use hierarchical load & weight for task priority
– Scale vruntime with hierarchical task weight
– Slight variation on vruntime formula

se→vruntime += (NICE_0_LOAD / task_se_h_weight(se)) *
delta_exec;

Corner case: uneven subgroups

● Top level same priority
● Subgroups/tasks different
● Tasks 1, 2 & 3 running

– Groups A & B equal priority
– Task 3 lower than 2
– Task 3 runs, vruntime advanced
– Task 2 goes to sleep, task 3 still waiting?!
– Task 3 equal prio as task 1 when task 2

sleeps…
– Need fast convergence

Solution: overflow runqueue

● Vruntime =+ delta_exec / prio
● Limit amount of vruntime accounted at once (to sched_latency?)
● Task cannot have all its delta_exec moved vruntime?

– Move task to overflow/overloaded runqueue heap
– Sorted by vruntime
– In pick_next_entity, bring left-most entity in overloaded heap up to current vruntime, re-insert if still

delta_exec remaining
– If that task has all delta_exec accounted, move back to main rq
– Skip that task for now, first run a task that was already on the main rq

● Move one task back at a time
● Do not starve tasks already on main rq

Issue: thundering herd wakeups

● Scenario:
– 1 task running in cgroup A
– 100 tasks waking up in cgroup B
– How to keep task in cgroup A from starvation?

● Solution: admission control
– Piggyback on overflow/overloaded rq heap
– If, at wakeup time, a task’s priority is such that it cannot run for sched_min_granularity_ns and account it

all as vruntime …
– … move it straight onto the overflow/overloaded rq heap
– Apply same rules to this task as to other tasks on that heap

● Thanks to sched_slice and __sched_period this only applies to tasks with below average
priority

CFS bandwidth plan

● When a cgroup is throttled, mark cgroup cfs_rqs as throttled (do not touch tasks)
● When pick_next_entity finds a task from a throttled cgroup

– Remove from root cfs_rq, place on cgroup cfs_rq
– Keep task vruntime intact, adjust cgroup min_vruntime

● When a cgroup is unthrottled
– Mark cgroup cfs_rq unthrottled
– Place unthrottled group on overflow/overloaded rq heap, using min_vruntime

● In pick_next_entity, if left-most entity on overflow/overloaded rq heap is a group
– Grab task with smallest min_vruntime, remove cgroup cfs_rq from heap if empty
– Adjust that task’s vruntime to root cfs_rq min_vruntime + ½ a timeslice, place on root cfs_rq
– Run smallest vruntime task on the root cfs_rq (may be other task than just woken one)

● Slow wakeup avoids “thundering herd” issues and minimizes work done
● Seems reasonable? What did I overlook?

	Slide 1
	Slide 2
	Slide 5
	Slide 6
	Slide 7
	Slide 9

