The "Thing" that was
"Latency Nice"

Let's review the Use-Cases we have and
find out what should be the best API



Introduction

e The question: how to dynamically tune the task wakeup path for certain
classes of workloads and usage scenarios?

e The problem: different use-cases have different contrasting needs

o reduce wakeup latency (e.g. by looking at fewer CPUs or preempting current)
o find a better wakeup CPU (e.g. by looking at more CPUs or finding an "optimal" one)

e The story so far: at OSPM we had a discussion "trying" to fit different needs
into a single knob (latency nice)

e Lesson learnt: we need to put more effort on defining the requirements
o we got a template!'l meant to collect requirements and (possibly) surface commonalities

[1] https://lore.kernel.org/lkml/87imfi2gbk.derkling@matbug.net/



Use-cases Requirementslt!!

Target behavior

Desired behavior

Existing knobs

Proportionality

Range

Desired APIs

Mapping Example

CPU Selection
A

[1] https://lore.kernel.org/lkml/87imfi2gbk.derkling@matbug.net/

Task Preemption
A

e

skip idle cpus

Idle cpu search during
wakeup trades throughput
for latency

Skip some/all cpu
searched for LS tasks

N/A

Specify num idle cpus in
sched domain to search

[0..min(size(SD), ALL)]

PT

Mapping from [-20,19]
[-20,-1]: search 20 + n
[0,19]: search ALL

skip energy_aware

EAS cpu search during
wakeup trades energy
saving for latency

Skip EAS wake-up path for
LS tasks,
fallback into sis()

None in mainline,
“Prefer idle” in Android

N/A
{0,1}
PT, TG

Binary mapping from range
e.g. [-20,-1]:1 [0,19]:0

tasks packing

Wakeup prefers idle core
is energy inefficient for
latency tolerant tasks

Add a new wake-up path
for LT task to select a busy
core beyond LLC

N/A

N/A

{0,1}

PT, TG

Binary mapping from range
e.g. [-20,0]:0 [1,19]:1

vruntime bonus

Latency tolerant tasks do
not preempt

Tune the "vruntime bonus",
higher for LS, smaller for LT

0.5*sysctl_sched latency
(hard-coded for all tasks)

Could be added to vdiff,

vdiff > wakeup gran(se)

[0..sysctl_sched_latency]

SW, PT, TG

Linear mapping from range
[-20, 19]:[sched_latency:0]

LT= Latency-Tolerant, LS = Latency-Sensitive, SW = System-Wide, PT = Per-Task and TG = per Task-Groups



Discussion Points

Here we are at reviewing and comparing the collected requirements and
addressing these main questions:

1. Which of the different use-cases can work together?
2. Do we have a case for search less -vs- more CPUs?

3. What about task group support?
which use-cases can benefit from?

4. Does it makes sense to use a unified API?

does it help to enforce consistency among co-existing use-cases?
if it's not being called ‘nice’, should we use a different range or set of values/flags?

5. What about a use-case dedicated set of per-task attributes?
should be via sched_setattr()?



