
The "Thing" that was
"Latency Nice"

Let's review the Use-Cases we have and
find out what should be the best API

● The question: how to dynamically tune the task wakeup path for certain
classes of workloads and usage scenarios?

● The problem: different use-cases have different contrasting needs
○ reduce wakeup latency (e.g. by looking at fewer CPUs or preempting current)
○ find a better wakeup CPU (e.g. by looking at more CPUs or finding an "optimal" one)

● The story so far: at OSPM we had a discussion "trying" to fit different needs
into a single knob (latency_nice)

● Lesson learnt: we need to put more effort on defining the requirements
○ we got a template[1] meant to collect requirements and (possibly) surface commonalities

Introduction

[1] https://lore.kernel.org/lkml/87imfi2qbk.derkling@matbug.net/

skip idle cpus skip energy_aware tasks packing vruntime bonus

Target behavior
Idle cpu search during

wakeup trades throughput
for latency

EAS cpu search during
wakeup trades energy

saving for latency

Wakeup prefers idle core
is energy inefficient for
latency tolerant tasks

Latency tolerant tasks do
not preempt

Desired behavior Skip some/all cpu
searched for LS tasks

Skip EAS wake-up path for
LS tasks,

fallback into sis()

Add a new wake-up path
for LT task to select a busy

core beyond LLC

Tune the "vruntime bonus",
higher for LS, smaller for LT

Existing knobs N/A None in mainline,
“Prefer idle” in Android N/A 0.5*sysctl_sched_latency

(hard-coded for all tasks)

Proportionality Specify num idle cpus in
sched domain to search N/A N/A Could be added to vdiff,

vdiff > wakeup_gran(se)

Range [0..min(size(SD), ALL)] {0,1} {0,1} [0..sysctl_sched_latency]

Desired APIs PT PT, TG PT, TG SW, PT, TG

Mapping Example
Mapping from [-20,19]
[-20,-1]: search 20 + n

 [0,19]: search ALL

Binary mapping from range
e.g. [-20,-1]:1 [0,19]:0

Binary mapping from range
 e.g. [-20,0]:0 [1,19]:1

Linear mapping from range
[-20, 19]:[sched_latency:0]

Use-cases Requirements[1]

LT= Latency-Tolerant, LS = Latency-Sensitive, SW = System-Wide, PT = Per-Task and TG = per Task-Groups

CPU Selection Task Preemption

[1] https://lore.kernel.org/lkml/87imfi2qbk.derkling@matbug.net/

Here we are at reviewing and comparing the collected requirements and
addressing these main questions:

1. Which of the different use-cases can work together?

2. Do we have a case for search less -vs- more CPUs?

3. What about task group support?
which use-cases can benefit from?

4. Does it makes sense to use a unified API?
does it help to enforce consistency among co-existing use-cases?
if it’s not being called ‘nice’, should we use a different range or set of values/flags?

5. What about a use-case dedicated set of per-task attributes?
should be via sched_setattr()?

Discussion Points

