
select_idle_sibling and wake_affine pains

Xi Wang

Scheduler MC

Linux Plumbers Conference 2020



Overview

● This talk is about
○ Our workloads and performance problems

○ Thoughts, not solutions 

○ Warming up for the next talk

■ Joint session with “The Thing” that was “Latency Nice”



select_idle_sibling being the soft2 rt sched class

● Many applications are latency sensitive yet not specialized enough to fit rt or 
SCHED_DEADLINE

○ CFS being the only practical choice

● Wake up load balancing is keeping these applications happy
○ When num of running threads <= num of cpus

■ One thread on each cpu -> negligible sched latency -> :) 
■ Two threads on the same cpu -> 10ms level (round robin) sched latency -> :(

○ Periodic or new idle load balancing is not frequent enough
○ Search more and spread more usually work for our workloads but opposite problems exist

■ Idle cpu search can add 10s of us to the wake up path, migration cost
● Lots of cache line bouncing

● select_idle_sibling got the job it never wanted
○ The select_task_rq_fair call tree is like half of the class



Not an ideal solution

● Even a small change reshuffles application performance metrics
○ Affects how close we can track upstream

■ Regressions get more attentions than improvements during rebase
■ Sometimes we have to revert to the old behavior even if the new behavior makes sense

● Only one decision can be made for the wake up path. Optimizations easily step 
each other

Spread to 
Idle

Sched 
Overhead

Sleep States Turbo / DVFS big.LITTLE / 
asym

Latency x x x

Throughput x x x x

Energy 
Efficiency

x x x x



Problems encountered

● Order of search
○ Search from cpu 0 -> search from target (waker) => worse cache locality

■ Two threads doing ping pong wakeups can walk through all cpus
■ recently_used_cpu was added but further improvements might be possible

● Aggressiveness of wake_affine
○ With WA_IDLE sched feat we had too many threads wake affined to the

same irq cpu for a particular application
○ Should hard irq or softirq cpu be considered idle?

■ Timer interrupts can be a separate class because they move with threads 
(scheduled by threads and fire on the same cpu)

○ We tried to enable wake affine across numa >=2 times but always had problems



Problems encountered

● LLC being the max range of search
○ Too narrow for AMD CCX (4~8 core LLC/NUMA domains)

■ As a cpu socket can have up to 64 cores, inter CCX dynamic imbalance can 
be a major problem

○ Too wide for some of the latency_nice usage cases due to overheads

● Early search termination (SIS_PROP)
○ One value heuristic, works well with efficient load balancing
○ Less accurate if threads have cpu affinity restrictions



How can we improve?

● Keep improving it in small steps?
○ Relatively straightforward to hack for individual cases, but difficult generalize / 

upstream

● Customized tuning to the rescue?
○ Evolved “latency nice”

● Explicitly support them?
○ I think the population of server side latency sensitive applications is growing
○ Explicitly support them with an new / existing sched class?

■ If priority or deadline can be enforced, spreading out is less critical
■ Why didn’t they fit an rt class in the first place?

● Still expect stuff in a generic sched class: Scaling up to many threads, 
oversubscriptions, work conserving and best effort support etc.


