~ © 2020 Arm Limited
-
P

Outline

« Proxy exec TL;DR
» Status update
« Prickly points

© 2020 Arm Limited q rm

Recap

e Whydo |l care?
o Priority inheritance++
o big.LITTLE problems'

e rt_mutex

o Dequeue task when waiting on lock
o Directly tweak lock owner’'spriority/

sched class

- Broken for e.g. deadline tasks

3 © 2020 Arm Limited

e proxy exec (PE)

Do not dequeue task when waiting on lock

pick next task() can still pickit

find a task (owner) that can unblock it instead

Run owner with waiter’s scheduling context (scheduling
decisions)

Honour owner’s execution context (CPU affinity)

+ Relies on the existing scheduler for inheriting
properties.

- Need to aggregate dependency chain on a single RQ

arm

https://lwn.net/Articles/820575/

Status

o Latest update from Juri' survives mutex locktorture with maxcpus=2
o Still dies for > 2 CPUs :(

e Rebased onto v5.8-rc4?
e Dugintoissues

o Broken with CONFIG_FAIR GROUP_SCHED=y and >2 CPUs
e Survives locktorture on CONFIG_FAIR GROUP_ SCHED=n

e Plastering here and there

e Plan for now
o lron out PE with CONFIG_FAIR GROUP_ SCHED=n
o Re-evaluate CFS screwups then

4 © 2020 Arm Limited q rm

https://github.com/jlelli/linux/tree/experimental/deadline/proxy-rfc-v2-debug
http://www.linux-arm.org/git?p=linux-vs.git;a=shortlog;h=refs/heads/mainline/sched/proxy-rfc-v3

Testing

e What does “survive locktorture” really mean for PE?
o Mutex survival is just one part of it

o rt_mutex locktorture tests inheritance, but not compatible with PE

e For now, hacky tests with CFS / RT tasks
o CFS busy-loop owns lock; RT task waits on it

o Runtime was accounted to owner rather than proxy: no RT throttling!
o Similar fix for DL (runtime enforcement!)

- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c

(struct rt_rqg *rt_rq)

© 2020 Arm Limited

arm

Userspace reporting

e pe owner: CFS busy loop, owns the lock

e pe blocker: FIFO-50, waits on the lock

Proxy execution:

PID USER PR NI VIRT RES SHR S %$CPU SMEM TIME+ COMMAND
120 root -51 0 0 0 0D 95.4 0.0 86:15.55 pe blocker
119 root 20 0 0 0 0 R 4.6 0.0 4:30.86 pe owner

Equivalent with rtmutex:

PID USER PR NI VIRT RES SHR S %CPU SMEM TIME+ COMMAND
119 root -51 0 0 0 0R 94.8 0.0 1:34.15 pe owner

6 © 2020 Arm Limited q rm

Mutex handoff

e When mutex is released, top-waiter is woken
e Optimistic spinner can come and nab lock

e Now-awake waiter can set MUTEX HANDOFF to force next handoff to top-waiter

o PE enforces MUTEX HANDOFF at every unlock

e Lletsususemutex owner () (more) reliably
o Should we be worried wrt optimistic spinning?

© 2020 Arm Limited q rm

arm

© 2020 Arm Limited

Thank You
Danke
Merci
159154
HYMNES
Gracias
Kiitos

AL C

YJdlq
g
SCis i
NTIN

© 2020 Arm Limited

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

Extra: transient migration state

e Dependency chain migration happens one RQ at a time

e >2 CPUs bugs: transient migration state?
e Can we actually do better?

o Direct migration to final RQ involves lots of rq_lock () juggling

10 © 2020 Arm Limited q rm

	
	Outline
	Recap
	Status
	Testing
	Userspace reporting
	Mutex handoff
	
	
	Extra: transient migration state

