
Looking forward on
Proxy Execu on

Valen n Schneider <valentin.schneider@arm.com>

25/08/2020

© 2020 Arm Limited

Outline

Proxy exec TL;DR

Status update

Prickly points

2 © 2020 Arm Limited

Recap

Why do I care?
Priority inheritance++
big.LITTLE problems¹

rt_mutex
Dequeue task when wai ng on lock
Directly tweak lock owner’s priority /
sched_class

- Broken for e.g. deadline tasks

proxy exec (PE)
Do not dequeue task when wai ng on lock
pick_next_task() can s ll pick it
find a task (owner) that can unblock it instead
Run owner with waiter’s scheduling context (scheduling
decisions)
Honour owner’s execu on context (CPU affinity)

+ Relies on the exis ng scheduler for inheri ng
proper es.
- Need to aggregate dependency chain on a single RQ

¹: https://lwn.net/Articles/820575/

3 © 2020 Arm Limited

https://lwn.net/Articles/820575/

Status

Latest update from Juri¹ survives mutex locktorture with maxcpus=2
S ll dies for > 2 CPUs :(

Rebased onto v5.8-rc4²
Dug into issues

Broken with CONFIG_FAIR_GROUP_SCHED=y and > 2 CPUs
Survives locktorture on CONFIG_FAIR_GROUP_SCHED=n

Plastering here and there

Plan for now
Iron out PE with CONFIG_FAIR_GROUP_SCHED=n
Re-evaluate CFS screwups then

¹: https://github.com/jlelli/linux/tree/experimental/deadline/proxy-rfc-v2-debug
²: http://www.linux-arm.org/git?p=linux-vs.git;a=shortlog;h=refs/heads/mainline/sched/proxy-rfc-v3

4 © 2020 Arm Limited

https://github.com/jlelli/linux/tree/experimental/deadline/proxy-rfc-v2-debug
http://www.linux-arm.org/git?p=linux-vs.git;a=shortlog;h=refs/heads/mainline/sched/proxy-rfc-v3

Tes ng
What does ”survive locktorture” really mean for PE?

Mutex survival is just one part of it
rt_mutex locktorture tests inheritance, but not compa ble with PE

For now, hacky tests with CFS / RT tasks
CFS busy-loop owns lock; RT task waits on it
Run me was accounted to owner rather than proxy: no RT thro ling!
Similar fix for DL (run me enforcement!)

--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -995,7 +995,7 @@ static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 static void update_curr_rt(struct rq *rq)
 {
- struct task_struct *curr = rq->curr;
+ struct task_struct *curr = rq->proxy;
 struct sched_rt_entity *rt_se = &curr->rt;
 u64 delta_exec;
 u64 now;

 if (curr->sched_class != &rt_sched_class)
 return;

(CFS not affected)

5 © 2020 Arm Limited

Userspace repor ng

pe_owner: CFS busy loop, owns the lock

pe_blocker: FIFO-50, waits on the lock

Proxy execu on:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
120 root -51 0 0 0 0 D 95.4 0.0 86:15.55 pe_blocker
119 root 20 0 0 0 0 R 4.6 0.0 4:30.86 pe_owner

Equivalent with rtmutex:
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
119 root -51 0 0 0 0 R 94.8 0.0 1:34.15 pe_owner

6 © 2020 Arm Limited

Mutex handoff

When mutex is released, top-waiter is woken

Op mis c spinner can come and nab lock

Now-awake waiter can set MUTEX_HANDOFF to force next handoff to top-waiter

PE enforces MUTEX_HANDOFF at every unlock
Lets us use mutex_owner() (more) reliably
Should we be worried wrt op mis c spinning?

7 © 2020 Arm Limited

Thank You
Danke
Merci
谢谢

ありがとう
Gracias
Kiitos

감사합니다
धन्यवाद
شكرًا

ধনযবাদ
תודה

© 2020 Arm Limited

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks

featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited

Extra: transient migra on state

Dependency chain migra on happens one RQ at a me
> 2 CPUs bugs: transient migra on state?

Can we actually do be er?
Direct migra on to final RQ involves lots of rq_lock() juggling

10 © 2020 Arm Limited

	
	Outline
	Recap
	Status
	Testing
	Userspace reporting
	Mutex handoff
	
	
	Extra: transient migration state

