

CTF: future plans and use in the
kernel

<nick.alcock@oracle.com>

The last year’s work
● Almost entirely one thing: link-time deduplication,

and infrastructure needed by it.
● The result is not very optimized but is already fast

and fairly compact (a bit over a minute to emit
10MiB of CTF for a typical 3000-module enterprise
kernel, including subdivision of types by module and
all function prototypes, and including unused types).

Future plans
● Now we can really get going on interesting stuff!
● My todo list: https://github.com/oracle/binutils-gdb/wiki/libctf-

todo
● Literally just committed gettextization (yesterday). Currently

working on symtab handling to map from symtab entries to
types

● pahole can emit C code from BTF: we could do with a similar
tool for CTF

A format bump
● Format v4 is the first format bump in a couple of years. Lots of plans! Read and

write support for current format kept.
● Improved compactness via a better fundamental type encoding, various forms of

delta-compression for big structures and perhaps for repetitive member names, and
replacement of parent/child dicts for ambiguous types with a better representation
using the unused “labels” feature of CTF: all provisional, dependent on whether it
improves compactness after compression

● Representation of GCC attributes (as per request at last LPC)
● Drop the variable section: use symtab handling to allow mapping of names to

variables and functions (as per request at last LPC)
● Record arg names in function prototypes (important for C code generation)
● LZMA compression (not sure what to do if users don’t have liblzma)

All plans change
● Last year’s future plans for CTF included reading and writing of
all related formats, including BTF

● BTF’s rate of change seems far too high for direct writing to be
practical: it seems to change multiple times per month

● binutils (and thus libctf) releases once every six months, so
even if the kernel always forced building with the latest binutils
(which it doesn’t), libctf could only ever emit an old BTF format

● Thus, direct emission of BTF from libctf is probably impractical:
reading of BTF from current kernels is also impractical

So, can libctf help at all?

I think it can!

Reusing CTF dedup in BTF
● Steal an idea from BTF
● Have an objdump option to generate C code from CTF in a

linked vmlinux (and/or one or more modules?): you get
nothing but types out, obviously. These are already
deduplicated types.

● Parent/child relationships in the input CTF can be emitted
as multiple TUs #including a parent TU (or just as a
comment that some reading tool can parse?)

● Two ways of distributing types between TUs currently exist

Type distribution: share-unconflicted
struct foo;
struct bar;
int baz;

uint16_t foo;
struct bar;

struct bar;
int quux;

a.ko

b.ko

c.ko

struct bar;
int baz;
int quux;

a.ko
struct foo;

b.ko
uint16_t foo;

This puts all types without ambiguous definitions into the shared parent.

Shared

Per-module

Type distribution: share-duplicated
struct foo;
struct bar;
int baz;

uint16_t foo;
struct bar;

struct bar;
int quux;

a.ko

b.ko

c.ko

struct bar;

a.ko
struct foo;
int baz;

b.ko
uint16_t foo;

This puts only types shared between modules into the shared parent.

Shared

c.ko
int quux;

Per-module

Reusing CTF dedup in BTF, contd
● You could then process these C files without

needing a deduplicator
● If this idea turns out to be useful it means that CTF

can pull in BTF-generated type C in the same
fashion, so BTF and CTF can borrow each others’
capabilities while retaining a fairly loose coupling,
so that both can grow without restricting the other.

Does this seem useful?

Can we do anything else?

