
BPF in the GNU Toolchain
and the Linux kernel

Jose E. Marchesi

Oracle Inc.

GNU Toolchain MC @ LPC 2020

Contents

1 The project
2 Port Status
3 xBPF
4 Support for BTF and CO-RE
5 Some issues raised at LPC 2019
6 Questions for the kernel hackers

The Project

• Phase 1: add BPF target to the toolchain
• Phase 2: make the generated programs palatable for the
kernel loaders and verifier, and keep it that way.

• Phase 3: provide other development goodies for BPF
developers (simulator, debugger, tracer, etc.)

Port Status

bpf-unknown-none

• binutils port
• Upstream since Aug 2019.
• Debian: binutils-bpf
• Oracle Linux 8: cross-binutils.

• GCC backend
• Upstream since Sep 2019.
• Debian: gcc-bpf
• Oracle Linux 8: cross-gcc.

• GDB port
• Upstream since Aug 2020.

• Simulator
• Upstream since Aug 2020.

• Dejagnu board
• bpf-sim

xBPF

• Experimental BPF.
• Purpose: compiler testing, BPF debugging, userland.
• -mxbpf in GCC and GAS.
• Current extensions:

• Save/restored callee-saved used registers.
• Indirect calls: callr %reg

• Coming extensions:
• Signed division instruction.
• Zero register?
• Indirect jumps.
• %fp relative addressing.
• Remove limit on stack frame size.

Support for BTF and CO-RE

• bpf-unknown-none-gcc -g should generate BTF, not
DWARF ⇒ GCC requires reforms in debug hooks.

• Support for __builtin_preserve_access_index.

Oracle team working on this.

Some issues raised at LPC 2019

• -mkernel=VERSION
• Kernel helpers are no longer implemented with built-ins ⇒
GCC internals are now kernel-helper agnostic.

• jmp32 instructions are now implemented.

A few questions for the kernel hackers

Kernel Helpers in C

• bpf_helpers.h
static __u32 (* bpf_get_prandom_u32)(void) = (void *) 7;

• -O0, LLVM generates invalid instruction, GCC emits an error.
• -O2, both LLVM and GCC do the right thing.

• Function attributes
static __u32 (* bpf_get_prandom_u32)(void)

__attribute__ ((kernel_helper (7)));

Work with any optimization level.

Question: LLVM to adopt the kernel_helper attribute?

Signed division instructions
• Not supported in eBPF

Q: Why there is no BPF_SDIV for signed divide operation ?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A: Because it would be rarely used. llvm errors in such case
and prints a suggestion to use unsigned divide instead .

• LLVM ICEs “PLEASE submit a bug report”.
• GCC emits a compilation error.

• Breaks C much: problem for testing compiler
• Supported in xBPF

sdiv OP_CLASS_ALU64=0xe
sdiv32 OP_CLASS_ALU=0xe
smod OP_CLASS_ALU64=0xf
smod32 OP_CLASS_ALU=0xf

Question: will you reconsider supporting sdiv?



Opcode space reserved for extensions to
eBPF

• Would allow variants like xBPF to be kept as superset ISA.
• Available opcodes:

Instruction Class Available opcodes
ALU 2
ALU64 2
JMP 2
LDX 8
STX 8
LD 23
ST 28

Question: do you agree to reserve a range for extensions?
Probably split it from the LD or ST classes?


