
KUnit - One Year Later
Brendan Higgins <brendanhiggins@google.com>

mailto:brendanhiggins@google.com


Who am I?

● Brendan Higgins <brendanhiggins@google.com>

● I am currently working on KUnit

● Previously I worked on

○ server bringup at Google

○ OpenBMC

mailto:brendanhiggins@google.com


Context



What is KUnit?

● Unit testing for the Linux kernel.
● I have given a couple talks on it in the last year:

○ https://linuxplumbersconf.org/event/4/contributions/545/
○ https://linux.conf.au/schedule/presentation/97/

● Merged in torvalds/master in v5.5

https://linuxplumbersconf.org/event/4/contributions/545/
https://linux.conf.au/schedule/presentation/97/


Updates



Stats over the last year



Indicators for the next year

● Between 5 and 10 new tests currently under review
● A large number of conversions under way
● Still getting a lot of contributions



Takeaway

● Some people seem to find KUnit useful
● Adoption isn’t as fast as I would like
● Contributions vastly exceeded my expectations
● We still have a lot of room to grow
● I’m happy :-)



New Features

● Module support
● DebugFS support
● Module only/userspace tests*
● Multithread/multitask support

○ Access test data outside of test thread*
○ Named resources



KUnit: Linux Kernel Integration Testing?!

● None of these features were from Google
● I was originally against integration testing features
● Last year I said, “Integration testing - ???”

○ It seems the hive mind has spoken



KTAP: Unified Linux Kernel Test Output

● Converging on single test output implementation
● KUnit eating non-standard tests



Update on Old New Features: KernelCI

● Good progress in Q4-Q2
● Heidi moved on to a new project :-(
● I only picked up the work again in the last month
● Seems pretty close



Update on Old New Features: Mocking

● Not as much progress as we would have liked
● Less upstream interest than expected

○ Some, but less than expected

● My bosses are doubling down on this
○ Seems uncontroversial
○ Useful for Google stuff



Lessons Learned



kunit_tool: Love or Hate?

● We got a lot of feedback that kunit_tool was pointless
● Then we changed it, lots of complaints
● Clearly, some people like it, some don’t
● People usually don’t say anything when they are happy

○ “The squeaky wheel gets the grease.”



People care about names

● People care a lot more about naming consistency than I 
expected

● Everyone has an opinion
● Lately this has been a major delay



Don’t let your vision get in the way of the goal

● I started off KUnit with a lot of strong ideas/beliefs
○ How it should be
○ How it should be used

● The hivemind has different ideas
● The hivemind is like a river

○ Provide structure
○ Facilitate
○ Don’t get in the way



The Future



Plans

● KernelCI: We’re pretty close
● Mocking: The dragons are coming, I swear
● Parameterized testing: useful for data driven tests
● More test conversions
● Even more better documentation



Plans: Stuff you haven’t heard before (maybe)

● kunit_tool support for QEMU
○ I have an RFC out
○ Creating compatible toolchain, Kconfig, QEMU configs, etc is hard
○ Having a script do it for “all” architectures is useful?

● Device fakes for driver fuzzing



Predictions

● KUnit will continue to develop integration test features
● All in kernel tests will report in KTAP
● KUnit coverage will continue to grow, faster, but still slowly



Talk to me!

● kunit-dev@googlegroups.com
● linux-kselftest@vger.kernel.org
● #kunit on oftc.net

mailto:kunit-dev@googlegroups.com
mailto:linux-kselftest@vger.kernel.org


Thanks!



Backup slides



Demo

https://docs.google.com/file/d/14MJNXWmKjpS1Mk1pMR5ZrwHDzQd5KQ-v/preview


KUnit Example
static void list_del_init_test(struct test *test)
{

struct list_head a, b;
LIST_HEAD(list);

list_add_tail(&a, &list);
list_add_tail(&b, &list);

/* before: [list] -> a -> b */
list_del_init(&a);

/* after: [list] -> b, a initialised */
KUNIT_EXPECT_EQ(test, list.next, &b);
KUNIT_EXPECT_EQ(test, b.prev, &list);
KUNIT_EXPECT_TRUE(test, list_empty_careful(&a));

}



More on x-unit

● https://google.github.io/kunit-docs/third_party/kernel/docs/
usage.html

● https://martinfowler.com/bliki/Xunit.html

https://google.github.io/kunit-docs/third_party/kernel/docs/usage.html
https://google.github.io/kunit-docs/third_party/kernel/docs/usage.html
https://martinfowler.com/bliki/Xunit.html


Where does KUnit fit into the kernel’s test paradigm?

● Lot’s of unit tests (~80%)
○ This is where KUnit lives

● A moderate number of integration tests (~15%)
○ ???

● And some end-to-end tests (~5%)
○ We got this covered (kselftest, xfstest, etc)


