
Flow Based Diagnostics in GCC GNU Tools @ LPC 2020

Flow-Based Diagnostics In GCC
GNU Tools @ LPC 2020

Martin Sebor

Principal Software Engineer, Red Hat

August 2020

Flow Based Diagnostics in GCC GNU Tools @ LPC 20202

Agenda
Flow-Based Diagnostics In GCC

● Warnings in GCC
● Status of existing warnings

○ Implementation Strategy
○ Strengths and Weaknesses

● Solving weaknesses
○ Reducing false positives
○ Warnings in development

● Ideas For Future Work
● Overlap With Static Analyzer

Flow Based Diagnostics in GCC GNU Tools @ LPC 20203

Warnings In GCC
Flow-Based Diagnostics In GCC

● 328 distinct warning options in total (GCC 9, 8, and 7: 297, 278, 265)
● 270 common and shared C-family warning options (256, 241, 230)
● 78 warning options used in the middle end (74, 71, 65)
● 5 warning options used in back ends
● (Plus 16 analyzer warnings.)

This talk is about a flow based subset of the 78 middle end warning options:

● Warnings that work with Gimple/SSA representation.
● Traverse multiple statements to track control and data flow.
● Some run in dedicated passes (alloca, restrict, strlen, sprintf, VRP, etc.)
● Others run just before expansion (builtins.c or calls.c).

Flow Based Diagnostics in GCC GNU Tools @ LPC 20204

Partial Listing Of Middle End Warnings
Flow-Based Diagnostics In GCC

● -Waggressive-loop-optimizations (~30 LOC in 1 file)
● -Walloc-size-larger-than (~100 LOC in 1 file)
● -Walloca/-vla/-larger-than (588 LOC in 1 file)
● -Warray-bounds (643 LOC)
● -Wformat-overflow/-truncation (4053 LOC in 1 file)
● -Wfree-nonheap-object (15 LOC(!) in 1 file)
● -Wrestrict (1832 LOC in 1 file)
● -Wreturn-local-addr (837 LOC in 1 file)
● -Wstring-compare (~50 LOC in 1 file)
● -Wstringop-overflow/-truncation (~1000 LOC across ~4 files)
● -Wuninitialized (2581 LOC in 1 file)
● -Wnonnull (~100 LOC in 5 files)
● -Wnull-dereference (same as -Wreturn-local-addr)

Flow Based Diagnostics in GCC GNU Tools @ LPC 20205

Access Based Warnings
Flow-Based Diagnostics In GCC

● -Warray-bounds
● -Wformat-overflow /-truncation
● -Wrestrict
● -Wstringop-overflow/-truncation
● -Wuninitialized
● -Wnonnull
● -Wnull-dereference

Flow Based Diagnostics in GCC GNU Tools @ LPC 20206

Implementation Strategy
Flow-Based Diagnostics In GCC

● For each interesting access statement:
○ Traverse the IL looking for the target (decl or allocation call).
○ Determine cumulative offset along the way.
○ Determine the size of the target.
○ Issue a warning

■ if offset is out-of-bounds for the size (for overflow warnings), or
■ if access overlaps (-Wrestrict).

● Interesting statements include:
○ Array indexing (ARRAY_REF and MEM_REF).
○ Assignments to/from character types.
○ Calls to string/memory built-in functions.
○ Calls to annotated user-defined functions.

Flow Based Diagnostics in GCC GNU Tools @ LPC 20207

Strengths
Flow-Based Diagnostics In GCC

● Analysis of whole function bodies, including inlined functions.
● Basic support for cross-functional analysis (still early stages).
● Bounds checking/buffer overflow coverage for declared and dynamically allocated

objects:
○ alloca, VLA
○ calloc, malloc, realloc
○ C++ operator new ,
○ functions with attribute alloc_size .

● Handling of member subobjects and array of arrays.
● Handling of zero-length arrays and flexible array members.
● Support for ranges of both offsets and sizes (for allocated objects/VLAs).

Flow Based Diagnostics in GCC GNU Tools @ LPC 20208

Support For Ranges and Allocated Objects
Strengths of Flow-Based Diagnostics In GCC

void f (unsigned n, unsigned i)
{
 if (n > 4 || i < 4) return;
 char vla[n]; // n’s range is [0, 4)
 vla[i] = 0; // i’s range is [4, UINT_MAX]
 …
}

warning: writing 1 byte into a region of size 0 [-Wstringop-overflow=]

7 | vla[i] = 0;

note: at offset [4, -1] to an object with size at most 4 declared here

6 | char vla[n];

Flow Based Diagnostics in GCC GNU Tools @ LPC 20209

Support For Cross-Functional Analysis
Strengths of Flow-Based Diagnostics In GCC

● Attribute access to annotate user-defined functions:
 __attribute__ ((access (write_only, 1, 2)))
 void init (int *, size_t);

● Implicit attribute access for VLAs and ordinary arrays (upcoming):
 void init (size_t n, int[n], int[32]);

● Used by:
○ -Warray-bounds (GCC 11)
○ -Wformat-overflow
○ -Wrestrict (since GCC 10)
○ -Wstringop-overflow (since GCC 10)
○ -Wuninitialized (GCC 11)
○ -Wunused-variable (GCC 11?)

Flow Based Diagnostics in GCC GNU Tools @ LPC 202010

Weaknesses

● Weaknesses in existing access-based warnings
○ False negatives
○ False positives
○ Inconsistent approaches
○ Missing coverage

Flow-Based Diagnostics In GCC

Flow Based Diagnostics in GCC GNU Tools @ LPC 202011

False Negatives

● Diverse/inconsistent implementations (little code sharing).
● Missing support for multiple objects (PHI nodes).
● Overly conservative decisions:

○ Sometimes needed by optimization.
○ Sometime to accommodate hacks in system code.

● Poor value range information/support (should be improved by Ranger).
● No support for symbolic ranges (Ranger support?)
● No support for definite loops (with known number of iterations).
● Premature folding:

○ E.g., strcpy to memcpy, or memcpy to MEM_REF.
○ Past the end accesses to constant aggregates folded to zero.

● Very limited analysis across function boundaries.
● Poor/limited LTO integration (some warnings not enabled).

Weaknesses of Flow-Based Diagnostics In GCC

Flow Based Diagnostics in GCC GNU Tools @ LPC 202012

Example: PHI Nodes Not Handled
Weaknesses of Flow-Based Diagnostics In GCC

void f (unsigned i, bool c)
{
 if (i < 4) return; // i’s range is [4, UINT_MAX]
 char a[4], b[4];
 char *p = c ? a : b;
 p[i] = 0; // past-the-end store not detected!
 …
}

What to do in cases like:

 char a[8], b[4];
 char *p = c ? a : b; // a’s big enough but b is not

● -Wmaybe-array-bounds? -Wmaybe-stringop-overflow?
● Introduce new levels? (Both warnings already have “levels”).

Flow Based Diagnostics in GCC GNU Tools @ LPC 202013

Example: Permissiveness For “Special” Code
Weaknesses of Flow-Based Diagnostics In GCC

● Trailing arrays of any size treated as flexible array members.
● memcpy bounds checking doesn’t consider member boundaries.
● strcpy lowered to memcpy.

struct Account {

 char name[8], passwd[8];

};

void f (struct Account *p)
{
 strcpy (p->name, “***invalid account***”); // overflow not diagnosed!
}

Flow Based Diagnostics in GCC GNU Tools @ LPC 202014

Example: Incomplete Range Support
Weaknesses of Flow-Based Diagnostics In GCC

● Conversions from signed to unsigned integers result in anti-ranges.
● Anti-ranges are tricky, prone to bugs, and (for the most part) not handled.

char* f (int n)
{
 if (n > 8)

n = 8; // n’s range [INT_MIN, 8) converted to size_t

 // yields anti-range ~[9, 0xffffffff7fffffff]

 char *p = malloc (n); // object is at most 8 bytes big
 strcpy (p, "0123456789"); // buffer overflow not diagnosed!

 …
}

Flow Based Diagnostics in GCC GNU Tools @ LPC 202015

Example: Poor Support for Definite Loops
Weaknesses of Flow-Based Diagnostics In GCC

● Out of bounds accesses to trailing arrays in definite loops aren’t diagnosed consistently.

struct A { int a[4]; };

void f (struct A *p)
{
 p->a[sizeof p->a - 1] = 0; // -Warray-bounds (good)
}

void g (struct A *p)
{
 for (unsigned i = 0; i != sizeof p->a; ++i)

p->a[i] = i; // buffer overflow not diagnosed!
}

Flow Based Diagnostics in GCC GNU Tools @ LPC 202016

False Positives

● Full/Partial Redundancy Elimination (FRE/PRE).
● Lack of support for pointer relationships.
● Imperfect loop unrolling.
● Interaction with sanitizers.
● And of course, bugs…

Weaknesses of Flow-Based Diagnostics In GCC

Flow Based Diagnostics in GCC GNU Tools @ LPC 202017

Example: Redundancy Elimination

Array bounds checking with -Warray-parameter (under review).

union U { char a3[3], a5[5]; };

void f3 (char[static 3]); // requires at least 3 elements
void f5 (char[static 5]); // … at least 5 elements

void g (union U *p)
{
 f3 (p->a3); // okay
 f5 (p->a5); // okay
}

False Positives of Flow-Based Diagnostics In GCC

Flow Based Diagnostics in GCC GNU Tools @ LPC 202018

Example: Redundancy Elimination

Output of -fdump-tree-fre3-details=/dev/stdout :

;; Function g (g, ...)

Value numbering stmt = _1 = &p_3(D)->a3;
…
Replaced &p_3(D)->a5 with _1 in all uses of _2 = &p_3(D)->a5;
Removing dead stmt _2 = &p_3(D)->a5;
…

False Positives of Flow-Based Diagnostics In GCC

Flow Based Diagnostics in GCC GNU Tools @ LPC 202019

Example: Redundancy Elimination

Output of -fdump-tree-fre3-details=/dev/stdout continued:

g (union U * p)
{
 char[3] * _1;
 <bb 2>:

 _1 = &p_3(D)->a3;
 f3 (_1);
 f5 (_1);
 return;
}

False Positives of Flow-Based Diagnostics In GCC

Flow Based Diagnostics in GCC GNU Tools @ LPC 202020

Example: Redundancy Elimination

union U { char a3[3], a5[5]; };

void f3 (char[static 3]); // requires at least 3 elements
void f5 (char[static 5]); // … at least 5 elements

void g (union U *p)
{
 f3 (p->a3); // okay
 f5 (p->a5); // okay, but a bogus warning!
}
warning: ‘f5’ accessing 5 bytes in a region of size 3 [-Wstringop-overflow=]

9 | f5 (p->a5);

False Positives of Flow-Based Diagnostics In GCC

Flow Based Diagnostics in GCC GNU Tools @ LPC 202021

Example: Loop Unrolling

struct S { int x, y, z; };

struct S a[1];

void g (int n)
{
 for (int i = 0; i < n; i++)
 {

 memset (&a[i], 0, sizeof *a);
 a[i].x = 1;

 }
}

False Positives of Flow-Based Diagnostics In GCC

Flow Based Diagnostics in GCC GNU Tools @ LPC 202022

Example: Loop Unrolling

g (int n)
{
 int i;
 struct s * _1;

 <bb 2>:
 if (n_5(D) > 0)

goto <bb 3>; [50.00%]
 else

goto <bb 5>; [50.00%]

 <bb 3>:
 __builtin_memset (&a, 0, 12);
 a[0].x = 1;

 …

False Positives of Flow-Based Diagnostics In GCC

Flow Based Diagnostics in GCC GNU Tools @ LPC 202023

Example: Loop Unrolling

 …
 if (n_5(D) > 1)

goto <bb 4>; [50.00%]
 else

goto <bb 5>; [50.00%]

 <bb 4>:
 _1 = &a + 12;
 __builtin_memset (&MEM <struct s[1]> [(void *)&a + 12B], 0, 12);
 __builtin_unreachable ();

 <bb 5>:
 return;
}

False Positives of Flow-Based Diagnostics In GCC

Flow Based Diagnostics in GCC GNU Tools @ LPC 202024

Example: Loop Unrolling

struct S { int x; };

struct S a[1];

void g (int n)
{
 for (int i = 0; i < n; i++) {

memset (&a[i], 0, sizeof *a);
a[i].x = 1;

 }

}

warning: ‘memset’ offset [12, 23] is out of the bounds [0, 12] of object ‘a’ with type
‘struct s[1]’ [-Warray-bounds]

6 | memset (&a[i], 0, sizeof *a);

False Positives of Flow-Based Diagnostics In GCC

Flow Based Diagnostics in GCC GNU Tools @ LPC 202025

Inconsistent Approaches
Weaknesses of Flow-Based Diagnostics In GCC

● Most warnings implemented independently of others.
● Most perform the same IL traversal.
● Little code sharing.
● Implemented in separate passes (restrict, sprintf, VRP).
● Duplication of code, effort and bugs.
● Intricate interactions (-Warray-bounds , -Wstringop-overflow).
● Duplicate warnings (TREE_NO_WARNING).

Flow Based Diagnostics in GCC GNU Tools @ LPC 202026

Missing Coverage
Weaknesses of Flow-Based Diagnostics In GCC

● Modifying non-modifiable objects (subobjects, strings, or functions).
● Invalid accesses to atomic or volatile objects.
● Invalid pointer arithmetic or relational expressions.
● Freeing pointers not returned from malloc (or operator new).
● Accessing freed memory.
● Using freed or other indeterminate pointers.
● Invalid accesses in const and pure functions.
● Overlapping accesses to restrict-qualified pointers.

Flow Based Diagnostics in GCC GNU Tools @ LPC 202027

Solving Weaknesses

● Develop general infrastructure.
● Consolidate as many access warnings as possible under one (or fewer) passes:

○ gimple-ssa-path-isolation.c
● Provide two levels: definite and “maybe.”
● Tighten up checkers and provide warning options for “special” code to opt out.
● Introduce codegen options to control response to detected problems:

○ optimize away (with warning),
○ insert __builtin_trap (with warning),
○ insert __builtin_unreachable (with warning).

● Defer warnings until expansion, avoid warning for dead code, and eliminate duplicates:
○ __builtin_warning.

● Change FRE/PRE to avoid substituting members.
● Reduce unnecessary instrumentation by sanitizers.

Weaknesses of Flow-Based Diagnostics In GCC

Flow Based Diagnostics in GCC GNU Tools @ LPC 202028

Why Path Isolation Pass?
Solving Weaknesses of Flow-Based Diagnostics

Gimple-ssa-path-isolation.c , the home of -Wreturn-local-addr:

● Model design
○ Supports PHIs (conditionals) by issuing “may be” warnings.
○ Tracks flow through built-in calls.
○ Implements path isolation.
○ Low rate of false positives (see bug 90556).
○ Controls response (flag_isolate_erroneous_paths_xxx).

● Future work
○ Detect escaping through indirection
○ Add attribute returns_arg to support strcpy/stpcpy-kind of functions
○ Detect returning through out-of-line functions defined in the same TU

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90556

Flow Based Diagnostics in GCC GNU Tools @ LPC 202029

New Warnings In Development
New Flow-Based Diagnostics In GCC

● -Warray-parameter, -Wvla-parameter: Bounds checking of array and VLA function
parameters.

● -Wwrite-const: Diagnose modifying non-modifiable objects (strings, functions, etc.)
● -Waccess-atomic, -Waccess-volatile: Diagnose invalid accesses to atomic- and

volatile-qualified objects.
● -Waccess-free: Diagnose accesses to freed objects and uses of freed pointers.
● -Wfree-nonheap-object: Enhance detection of calls to free with pointers not returned

from calloc/malloc/realloc or C++ operator new.
● -Wconst-function-access, -Wpure-function-access: Diagnose invalid accesses by

const and pure functions.
● Add attribute free (and/or dealloc) to annotate user-defined functions that free (or

otherwise deallocate) memory.

Flow Based Diagnostics in GCC GNU Tools @ LPC 202030

Ideas For Future Work
Flow-Based Diagnostics In GCC

Analysis/state sharing across function calls:

1. For each function in a translation unit:
○ Record every call F(args) to another out-of-line function F with parameters

parms and known definition.
2. For each call F(args):

○ Substitute args into F’s parms and reanalyze F’s definition for accesses,
considering args values.

3. Optimize to minimize compilation cost.

Is there an existing infrastructure to build the above on?

Flow Based Diagnostics in GCC GNU Tools @ LPC 202031

Overlap With Static Analyzer
Flow-Based Diagnostics In GCC

● Analyzer advantages:
○ Can work harder (runtime overhead is more acceptable).
○ Can analyze paths not interesting for optimization.
○ Not subject to inlining and other optimizer constraints.
○ Not affected by optimizing transformations/folding, etc.
○ Higher rates of false positives acceptable.

● Advantages of middle end warnings:
○ Reuse of existing optimizer infrastructure.
○ False positives/negatives often expose missing optimization.
○ Analysis opens up further optimization opportunities:

■ e.g., sprintf, strlen.
■ Path isolation.

○ Can modify generated code (fold code, inject traps, etc.)

Flow Based Diagnostics in GCC GNU Tools @ LPC 202032

Overlap With Static Analyzer
Flow-Based Diagnostics In GCC

Ideal goals:
● Present information in a consistent form (need conventions):

○ Same distinction between/control of definite vs “maybe” warnings.
○ Same notation for offsets, sizes, PHI nodes.
○ Same depiction of data/control flow?

● Avoid issuing duplicate diagnostics.
● Minimize duplication of code/logic with middle end warnings.
● Take advantage of existing middle end infrastructure?
● Share tests?

Open questions:

● Are any bugs/warnings ideally suited for middle end vs analyzer?
● How to decide where to invest resources?

Flow Based Diagnostics in GCC GNU Tools @ LPC 2020

Questions?

Feel free to email
msebor@gmail.com

or
gcc-help@gcc.gnu.org

mailto:msebor@gmail.com
mailto:gcc-help@gcc.gnu.org

THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

