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Warnings In GCC
Flow-Based Diagnostics In GCC

● 328 distinct warning options in total (GCC 9, 8, and 7: 297, 278, 265)
● 270 common and shared C-family warning options (256, 241, 230)
● 78 warning options used in the middle end (74, 71, 65)
● 5 warning options used in back ends
● (Plus 16 analyzer warnings.)

This talk is about a flow based subset of the 78 middle end warning options:

● Warnings that work with Gimple/SSA representation.
● Traverse multiple statements to track control and data flow.
● Some run in dedicated passes (alloca, restrict, strlen, sprintf, VRP, etc.)
● Others run just before expansion (builtins.c  or calls.c).
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Partial Listing Of Middle End Warnings
Flow-Based Diagnostics In GCC

● -Waggressive-loop-optimizations  (~30 LOC in 1 file)
● -Walloc-size-larger-than  (~100 LOC in 1 file)
● -Walloca/-vla/-larger-than  (588 LOC in 1 file)
● -Warray-bounds  (643 LOC)
● -Wformat-overflow/-truncation  (4053 LOC in 1 file)
● -Wfree-nonheap-object  (15 LOC(!) in 1 file)
● -Wrestrict  (1832 LOC in 1 file)
● -Wreturn-local-addr  (837 LOC in 1 file)
● -Wstring-compare  (~50 LOC in 1 file)
● -Wstringop-overflow/-truncation  (~1000 LOC across ~4 files)
● -Wuninitialized  (2581 LOC in 1 file)
● -Wnonnull  (~100 LOC in 5 files)
● -Wnull-dereference  (same as -Wreturn-local-addr)
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Access Based Warnings 
Flow-Based Diagnostics In GCC

● -Warray-bounds
● -Wformat-overflow /-truncation
● -Wrestrict
● -Wstringop-overflow/-truncation
● -Wuninitialized
● -Wnonnull
● -Wnull-dereference
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Implementation Strategy
Flow-Based Diagnostics In GCC

● For each interesting access statement:
○ Traverse the IL looking for the target (decl or allocation call).
○ Determine cumulative offset along the way.
○ Determine the size of the target.
○ Issue a warning

■ if offset is out-of-bounds for the size (for overflow warnings), or
■ if access overlaps (-Wrestrict).

● Interesting statements include:
○ Array indexing (ARRAY_REF and MEM_REF).
○ Assignments to/from character types.
○ Calls to string/memory built-in functions.
○ Calls to annotated user-defined functions.
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Strengths
Flow-Based Diagnostics In GCC

● Analysis of whole function bodies, including inlined functions.
● Basic support for cross-functional analysis (still early stages).
● Bounds checking/buffer overflow coverage for declared and dynamically allocated 

objects:
○ alloca, VLA
○ calloc, malloc, realloc
○ C++ operator new ,
○ functions with attribute alloc_size .

● Handling of member subobjects and array of arrays.
● Handling of zero-length arrays and flexible array members.
● Support for ranges of both offsets and sizes (for allocated objects/VLAs).
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Support For Ranges and Allocated Objects
Strengths of Flow-Based Diagnostics In GCC

void f (unsigned n, unsigned i)
{
  if (n > 4 || i < 4) return;
  char vla[n];   // n’s range is [0, 4)
  vla[i] = 0;    // i’s range is [4, UINT_MAX]
  …
}

warning: writing 1 byte into a region of size 0 [-Wstringop-overflow=]

7 |   vla[i] = 0;

note: at offset [4, -1] to an object with size at most 4 declared here

6 |   char vla[n];
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Support For Cross-Functional Analysis
Strengths of Flow-Based Diagnostics In GCC

● Attribute access to annotate user-defined functions:
  __attribute__ ((access (write_only, 1, 2)))
  void init (int *, size_t);

● Implicit attribute access for VLAs and ordinary arrays (upcoming):
  void init (size_t n, int[n], int[32]);

● Used by:
○ -Warray-bounds  (GCC 11)
○ -Wformat-overflow
○ -Wrestrict  (since GCC 10)
○ -Wstringop-overflow  (since GCC 10)
○ -Wuninitialized  (GCC 11)
○ -Wunused-variable  (GCC 11?)
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Weaknesses

● Weaknesses in existing access-based warnings
○ False negatives
○ False positives
○ Inconsistent approaches
○ Missing coverage

Flow-Based Diagnostics In GCC
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False Negatives 

● Diverse/inconsistent implementations (little code sharing).
● Missing support for multiple objects (PHI nodes).
● Overly conservative decisions:

○ Sometimes needed by optimization.
○ Sometime to accommodate hacks in system code.

● Poor value range information/support (should be improved by Ranger).
● No support for symbolic ranges (Ranger support?)
● No support for definite loops (with known number of iterations).
● Premature folding:

○ E.g., strcpy to memcpy, or memcpy to MEM_REF.
○ Past the end accesses to constant aggregates folded to zero.

● Very limited analysis across function boundaries.
● Poor/limited LTO integration (some warnings not enabled).

Weaknesses of Flow-Based Diagnostics In GCC
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Example: PHI Nodes Not Handled
Weaknesses of Flow-Based Diagnostics In GCC

void f (unsigned i, bool c)
{
  if (i < 4) return;       // i’s range is [4, UINT_MAX]
  char a[4], b[4];
  char *p = c ? a : b;
  p[i] = 0;                // past-the-end store not detected!
  …
}

What to do in cases like:

  char a[8], b[4];
  char *p = c ? a : b;     // a’s big enough but b is not

● -Wmaybe-array-bounds? -Wmaybe-stringop-overflow?
● Introduce new levels? (Both warnings already have “levels”).
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Example: Permissiveness For “Special” Code
Weaknesses of Flow-Based Diagnostics In GCC

● Trailing arrays of any size treated as flexible array members.
● memcpy bounds checking doesn’t consider member boundaries.
● strcpy lowered to memcpy.

struct Account {

  char name[8], passwd[8];

};

void f (struct Account *p)
{
  strcpy (p->name, “***invalid account***”);   // overflow not diagnosed!
}
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Example: Incomplete Range Support
Weaknesses of Flow-Based Diagnostics In GCC

● Conversions from signed to unsigned integers result in anti-ranges.
● Anti-ranges are tricky, prone to bugs, and (for the most part) not handled.

char* f (int n)
{
  if (n > 8)

n = 8;                     // n’s range [INT_MIN, 8) converted to size_t

                                // yields anti-range ~[9, 0xffffffff7fffffff]

  char *p = malloc (n);         // object is at most 8 bytes big
  strcpy (p, "0123456789");     // buffer overflow not diagnosed!

  … 
}
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Example: Poor Support for Definite Loops
Weaknesses of Flow-Based Diagnostics In GCC

● Out of bounds accesses to trailing arrays in definite loops aren’t diagnosed consistently.
 

struct A { int a[4]; };

void f (struct A *p)
{
  p->a[sizeof p->a - 1] = 0;     // -Warray-bounds (good)
}

void g (struct A *p)
{
  for (unsigned i = 0; i != sizeof p->a; ++i)

p->a[i] = i;                // buffer overflow not diagnosed!
}
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False Positives

● Full/Partial Redundancy Elimination (FRE/PRE).
● Lack of support for pointer relationships.
● Imperfect loop unrolling.
● Interaction with sanitizers.
● And of course, bugs… 

Weaknesses of Flow-Based Diagnostics In GCC
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Example: Redundancy Elimination

Array bounds checking with -Warray-parameter  (under review).

union U { char a3[3], a5[5]; };

void f3 (char[static 3]);   // requires at least 3 elements
void f5 (char[static 5]);   // … at least 5 elements

void g (union U *p)
{
    f3 (p->a3);             // okay
    f5 (p->a5);             // okay
}

False Positives of Flow-Based Diagnostics In GCC
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Example: Redundancy Elimination

Output of -fdump-tree-fre3-details=/dev/stdout :

;; Function g (g, ...)

Value numbering stmt = _1 = &p_3(D)->a3;
…
Replaced &p_3(D)->a5 with _1 in all uses of _2 = &p_3(D)->a5;
Removing dead stmt _2 = &p_3(D)->a5;
… 

False Positives of Flow-Based Diagnostics In GCC
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Example: Redundancy Elimination

Output of -fdump-tree-fre3-details=/dev/stdout  continued:

g (union U * p)
{
  char[3] * _1;
  <bb 2>:

  _1 = &p_3(D)->a3;
  f3 (_1);
  f5 (_1);
  return;
}

False Positives of Flow-Based Diagnostics In GCC
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Example: Redundancy Elimination

union U { char a3[3], a5[5]; };

void f3 (char[static 3]);   // requires at least 3 elements
void f5 (char[static 5]);   // … at least 5 elements

void g (union U *p)
{
    f3 (p->a3);             // okay
    f5 (p->a5);             // okay, but a bogus warning!
}
warning: ‘f5’ accessing 5 bytes in a region of size 3 [-Wstringop-overflow=]

9 |   f5 (p->a5);

False Positives of Flow-Based Diagnostics In GCC



Flow Based Diagnostics in GCC GNU Tools @ LPC 202021

Example: Loop Unrolling

struct S { int x, y, z; };

struct S a[1];

void g (int n)
{
  for (int i = 0; i < n; i++)
    {

  memset (&a[i], 0, sizeof *a);
  a[i].x = 1;

    }
}

False Positives of Flow-Based Diagnostics In GCC
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Example: Loop Unrolling

g (int n)
{
  int i;
  struct s * _1;

  <bb 2>:
  if (n_5(D) > 0)

goto <bb 3>; [50.00%]
  else

goto <bb 5>; [50.00%]

  <bb 3>:
  __builtin_memset (&a, 0, 12);
  a[0].x = 1;

  … 

False Positives of Flow-Based Diagnostics In GCC
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Example: Loop Unrolling

  … 
  if (n_5(D) > 1)

goto <bb 4>; [50.00%]
  else

goto <bb 5>; [50.00%]

  <bb 4>:
  _1 = &a + 12;
  __builtin_memset (&MEM <struct s[1]> [(void *)&a + 12B], 0, 12);
  __builtin_unreachable ();

  <bb 5>:
  return;
}

False Positives of Flow-Based Diagnostics In GCC
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Example: Loop Unrolling

struct S { int x; };

struct S a[1];

void g (int n)
{
  for (int i = 0; i < n; i++) {

memset (&a[i], 0, sizeof *a);
a[i].x = 1;

  }

}

warning: ‘memset’ offset [12, 23] is out of the bounds [0, 12] of object ‘a’ with type 
‘struct s[1]’ [-Warray-bounds]

6 | memset (&a[i], 0, sizeof *a);

False Positives of Flow-Based Diagnostics In GCC
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Inconsistent Approaches
Weaknesses of Flow-Based Diagnostics In GCC

● Most warnings implemented independently of others.
● Most perform the same IL traversal.
● Little code sharing.
● Implemented in separate passes (restrict, sprintf, VRP).
● Duplication of code, effort and bugs.
● Intricate interactions (-Warray-bounds , -Wstringop-overflow ).
● Duplicate warnings (TREE_NO_WARNING ).
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Missing Coverage
Weaknesses of Flow-Based Diagnostics In GCC

● Modifying non-modifiable objects (subobjects, strings, or functions).
● Invalid accesses to atomic or volatile objects.
● Invalid pointer arithmetic or relational expressions.
● Freeing pointers not returned from malloc (or operator new ).
● Accessing freed memory.
● Using freed or other indeterminate pointers.
● Invalid accesses in const and pure functions.
● Overlapping accesses to restrict-qualified pointers.
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Solving Weaknesses

● Develop general infrastructure.
● Consolidate as many access warnings as possible under one (or fewer) passes:

○ gimple-ssa-path-isolation.c
● Provide two levels: definite and “maybe.”
● Tighten up checkers and provide warning options for “special” code to opt out.
● Introduce codegen options to control response to detected problems:

○ optimize away (with warning),
○ insert __builtin_trap  (with warning),
○ insert __builtin_unreachable  (with warning).

● Defer warnings until expansion, avoid warning for dead code,  and eliminate duplicates:
○ __builtin_warning.

● Change FRE/PRE to avoid substituting members.
● Reduce unnecessary instrumentation by sanitizers.

Weaknesses of Flow-Based Diagnostics In GCC
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Why Path Isolation Pass?
Solving Weaknesses of Flow-Based Diagnostics

Gimple-ssa-path-isolation.c , the home of -Wreturn-local-addr:

● Model design
○ Supports PHIs (conditionals) by issuing “may be” warnings.
○ Tracks flow through built-in calls.
○ Implements path isolation.
○ Low rate of false positives (see bug 90556).
○ Controls response (flag_isolate_erroneous_paths_xxx ).

● Future work
○ Detect escaping through indirection
○ Add attribute returns_arg  to support strcpy/stpcpy-kind of functions
○ Detect returning through out-of-line functions defined in the same TU

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90556
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New Warnings In Development
New Flow-Based Diagnostics In GCC

● -Warray-parameter, -Wvla-parameter: Bounds checking of array and VLA function 
parameters.

● -Wwrite-const: Diagnose modifying non-modifiable objects (strings, functions, etc.)
● -Waccess-atomic, -Waccess-volatile: Diagnose invalid accesses to atomic- and 

volatile-qualified objects.
● -Waccess-free: Diagnose accesses to freed objects and uses of freed pointers.
● -Wfree-nonheap-object: Enhance detection of calls to free with pointers not returned 

from calloc/malloc/realloc or C++ operator new.
● -Wconst-function-access, -Wpure-function-access: Diagnose invalid accesses by 

const and pure functions.
● Add attribute free (and/or dealloc) to annotate user-defined functions that free (or 

otherwise deallocate) memory.
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Ideas For Future Work
Flow-Based Diagnostics In GCC

Analysis/state sharing across function calls:

1. For each function in a translation unit:
○ Record  every call F(args) to another out-of-line function F with parameters 

parms and known definition.
2. For each call F(args):

○ Substitute args into F’s parms and reanalyze F’s definition for accesses, 
considering args values.

3. Optimize to minimize compilation cost.

Is there an existing infrastructure to build the above on?
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Overlap With Static Analyzer
Flow-Based Diagnostics In GCC

● Analyzer advantages:
○ Can work harder (runtime overhead is more acceptable).
○ Can analyze paths not interesting for optimization.
○ Not subject to inlining and other optimizer constraints.
○ Not affected by optimizing transformations/folding, etc.
○ Higher rates of false positives acceptable.

● Advantages of middle end warnings:
○ Reuse of existing optimizer infrastructure.
○ False positives/negatives often expose missing optimization.
○ Analysis opens up further optimization opportunities:

■ e.g., sprintf, strlen.
■ Path isolation.

○ Can modify generated code (fold code, inject traps, etc.)
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Overlap With Static Analyzer
Flow-Based Diagnostics In GCC

Ideal goals:
● Present information in a consistent form (need conventions):

○ Same distinction between/control of definite vs “maybe” warnings.
○ Same notation for offsets, sizes, PHI nodes.
○ Same depiction of data/control flow?

● Avoid issuing duplicate diagnostics.
● Minimize duplication of code/logic with middle end warnings.
● Take advantage of existing middle end infrastructure?
● Share tests?

Open questions:

● Are any bugs/warnings ideally suited for middle end vs analyzer?
● How to decide where to invest resources?



Flow Based Diagnostics in GCC GNU Tools @ LPC 2020

Questions?

Feel free to email
msebor@gmail.com

or
gcc-help@gcc.gnu.org

mailto:msebor@gmail.com
mailto:gcc-help@gcc.gnu.org
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