
The Challenges of GNU Tool Chain
Support for CORE-V

Craig Blackmore
Jeremy Bennett

Copyright © 2020 Embecosm. Freely available under a
Creative Commons Attribution-ShareAlike license.

RISC-V

RISC-V Instructions “Green Card”

RISC-V Extensible Instructions

Credit: RISC-V International

RISC-V 32-Bit Instruction Formats

Credit: Wikipedia

RISC-V 32-bit Opcode Groups

bbb 000 001 010 011 100 101 110 111

xx (>32b)
00 LOAD LOAD-FP MISC-MEM OP-IMM AUIPC OP-IMM-32 48b
01 STORE STORE-FP AMO OP LUI OP-32 64b
10 MADD MSUB NMSUB NMADD OP-FP 48b
11 BRANCH JALR JAL SYSTEM ≥ 80b

opcode = xxbbb11

RISC-V 32-bit Opcode Groups

bbb 000 001 010 011 100 101 110 111

xx (>32b)
00 LOAD LOAD-FP MISC-MEM OP-IMM AUIPC OP-IMM-32 48b
01 STORE STORE-FP AMO OP LUI OP-32 64b
10 MADD MSUB NMSUB NMADD OP-FP reserved 48b
11 BRANCH JALR reserved JAL SYSTEM reserved ≥ 80b

opcode = xxbbb11

RISC-V 32-bit Opcode Groups

bbb 000 001 010 011 100 101 110 111

xx (>32b)
00 LOAD LOAD-FP custom-0 MISC-MEM OP-IMM AUIPC OP-IMM-32 48b
01 STORE STORE-FP custom-1 AMO OP LUI OP-32 64b
10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2 48b
11 BRANCH JALR reserved JAL SYSTEM reserved custom-3 ≥ 80b

opcode = xxbbb11

RISC-V 32-bit Opcode Groups

bbb 000 001 010 011 100 101 110 111

xx (>32b)
00 LOAD LOAD-FP custom-0 MISC-MEM OP-IMM AUIPC OP-IMM-32 48b
01 STORE STORE-FP custom-1 AMO OP LUI OP-32 64b
10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2 48b
11 BRANCH JALR reserved JAL SYSTEM reserved custom-3 ≥ 80b

opcode = xxbbb11

custom-2 and custom-3 are also reserved for RV128

Parallel Ultra Low Power (PULP)
● 4-stage, in-order
● 32-bit RV32IMFC
● PULP custom

extensions
– post-inc load/store
– multiply-accumulate
– ALU extensions
– hardware loops
– bit manipulation
– SIMD

PULP RI5CY core

RISC-V Organizations

standardization body

industry group industry group

CORE-V RV32E40P
● 4-stage, in-order
● 32-bit RV32IMFC
● PULP custom

extensions
– post-inc load/store
– multiply-accumulate
– ALU extensions
– hardware loops
– bit manipulation
– SIMD

OpenHW Group CORE-V CV32E40P

PULP RI5CY CORE-V CV32E40P→

● Hardware
– robust verification program

PULP RI5CY CORE-V CV32E40P→

● Hardware
– robust verification program

● Software
– need GNU tools, Clang/LLVM tools
– need RTOS and full-fat OS
– need IDEs
– need simulators

PULP RI5CY CORE-V CV32E40P→

● Hardware
– robust verification program

● Software
– need GNU tools, Clang/LLVM tools
– need RTOS and full-fat OS
– need IDEs
– need simulators

● Reference platform for FPGA use

CORE-V CV32E40P GNU Tools
● Full GNU tool chain supporting

– ~150 new instruction types
– ~350 if you count all the variants
– based on GCC 7.1

CORE-V CV32E40P GNU Tools
● Full GNU tool chain supporting

– ~150 new instruction types
– ~350 if you count all the variants
– based on GCC 7.1

● University research compiler
– no tests (not even the upstream ones)
– no adherence to GNU coding standards
– tramples all over reserved RISC-V coding space

CORE-V GNU Tools Strategy
● Move instruction encoding to custom[0123] (hardware)

– blocker on any upstreaming
– leave out SIMD and bit manipulation

● being standardized officially

● Update GNU tool chain
– add tests to existing (2017) PULP binutils-gdb
– roll forward to 2020 binutils-gdb
– port PULP GCC changes to 2020 GCC

CORE-V GNU Tools Progress
● Back-porting tests to 2017 binutils-gdb failed

– too much other research code in the way
– RISC-V binutils-gdb port has changed much in 3 years

CORE-V GNU Tools Progress
● Back-porting tests to 2017 binutils-gdb failed

– too much other research code in the way
– RISC-V binutils-gdb port has changed much in 3 years

● Restart adding PULP commits to 2020 binutils-gdb
– selective choice of just CORE-V features

CORE-V GNU Tools Progress
● Back-porting tests to 2017 binutils-gdb failed

– too much other research code in the way
– RISC-V binutils-gdb port has changed much in 3 years

● Restart adding PULP commits to 2020 binutils-gdb
– selective choice of just CORE-V features

● Should we use CGEN instead?
– already have a full RISC-V implementation

Upstreaming
● Central principle for the OpenHW Group

– open source work must be contributed back and shared
● Choose a target “triplet” for non-official RISC-V

– arch-subarch-vendor-os-environment
– riscv32-corev-none-elf (for bare metal)

● Add architecture options -march=Ycorev-xxx
– allows discrimination between CORE-V features

● Start with binutils-gdb, then GCC, then newlib

Poll: Is This the Right Approach?

A) Yes

B) No

Thank You

craig.blackmore@embecosm.com
jeremy.bennett@embecosm.com

openhwgroup.org

Craig Blackmore
Jeremy Bennett

Copyright © 2020 Embecosm. Freely available under a
Creative Commons Attribution-ShareAlike license.

mailto::craig.blackmore@embecosm.com
mailto::jeremy.bennett@embecosm.com
https://www.openhwgroup.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

