

Project Ranger Update
Andrew MacLeod
Aldy Hernandez

● Introduced GNU tools cauldron 09/19

● Quick summary
● Changes since last year
● Current stage 1 plans
● Future plans

Quick summary

● Extensible infrastructure (range-ops)
● Multiple sub-range support – precision!
● On-demand range query in GCC

Range Operations

● Range equation solver for instructions
● LHS = OP1 + OP2
● Can solve for LHS, OP1 or OP2 with the other 2
● Allows general calculations in reverse

 if (x < 5)
 is really [1,1] = (x < 5) on the true edge,
 which solves x as [MIN, 4]

● This has been in trunk since Oct 2019

Multiple sub-ranges

● Multiple non-overlapping, integral sub-ranges
● Templated

– Choose your desired precision

– “Widest_irange” for maximal precision

● Replaces value_range: a single pair plus “anti-
range”

● Live in trunk, available now

Ranger API

On demand, cached calculations & queries
- no other infrastructure requirements

● range_of_expr (tree expr, gimple *s)
● range_of_stmt (gimple *s)
● range_on_edge (edge e, tree name)
● range_on_entry (basic_block bb, tree name)
● range_on_exit (basic_block bb, tree name)

- Preparing for trunk now

Significant changes

● Class irange/value_range merge
● Numerous range-op refinements
● Internal restructuring of ranger
● Consolidation with existing VRPs
● Relational query prototype

Irange changes

● Uses trees internally, not wide_int
● Multi-range API mostly unchanged
● Compatibility layer with legacy

– int_range <1> is now a value_range

● Deprecated legacy API
● Porting guidelines document available

Relational object

● class value_relation
● Tracks ==, !=, <, <=,>, >=, no relation
● Can be combined union/intersect/not
● (a_2 < b_6) union (a_2 == b_6)

– Results in a_2 < = b_6

● If (b_6 == a_2) will resolve to true if the intersection of the
condition and the known relation is... the condition.

Ie, the condition is a subset of the known relation.

Registering Relations

● Follows range-ops model, but not integrated there yet
– Query/find relation between 2 of LHS, OP1, OP2

– Augmented with any known ranges

– Simple for if (x_1 < b_2).

– x_2 = b_3 + 6
● Registers (x_2 > b_3) for signed values
● For unsigned, if ranges are provided

– (x_2 < b_3) for x_2 == [0, 5]
– (x_2 > b_3) for x_2 == [6, MAX]
– (x_2 != b_3) for x_2 == [0, MAX] // effectively no range available

● Range-ops or query can use/calc b_3 ranges instead

Simple Example

● (x_2 < b_3) for x_2 == [0, 5]
● (x_2 > b_3) for x_2 == [6, MAX]

X_2 = b_3 + 6

if (x_2 <= 5) // x_2 = [0,5] on true edge, b_3 = [0, MAX-6]

 overflowed() // (x_2 < b_3) will be true here

else // x_2 = [6, MAX] false edge, b_3 = [MAX-5, MAX]

 something() // (x_2 > b_3) will be true here

// afterwards, (x_2 != b_3) will be true

Relational Queries

● Operates as an oracle
● Tracks “equivalency sets” and “other relations”
● Equiv sets solves first, then relations
● Register relations as statements are seen
● Currently requires dominators for efficiency
● API WIP… currently

– bitmap query_equiv (tree name, gimple *s = NULL);

– bool relation_oracle::apply_relations (irange &r, gimple...

Current Stage 1

● Range-ops integrated in GCC 10
● Class irange now in trunk (July)
● Ranger going thru final performance

– Should be checked in by early Sept.

– Includes 3 or 4 pass conversions for speedup
● (walloca, wrestrict, and wprintf)

– Hybrid EVRP : old and new coexist for now

● Relation oracle due Early October.

The future

● Ranger includes iterative updating
– Replace EVRP and VRP with just common pass

● “push” range queries to appropriate passes
● Enhanced range-ops for multi-range
● Block “outgoing range” refinements
● Tighter integration with dominators/relations
● Non integral ranges.
● Bit-mask tracking

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

