
Address Space Isolation
(ASI)

Speculative execution protection

Google

Ofir Weisse, Junaid Shahid, Oleg Rombakh, and Paul Turner

The Speculative Attacks Threat
● These are μ-architectural attacks
● They break architectural boundaries

○ User/kernel boundary
○ Inter-process boundary
○ VM/host boundary

● They therefore compromise
○ Our customer’s data
○ Infrastructure (host) credentials

● Current mitigations are either
○ High overhead, or
○ Incomplete

What Can be Stolen

Guest OS A Guest OS B

Host
Platform creds

Guest data

Roadmap
● The Speculative Attacks Threat
● L1TF Refresher
● Why Mitigation is Challenging
● Address Space Isolation (ASI)

To learn more about speculative attacks:

foreshadowattack.eu

ofirweisse.com/MICRO2019_NDA.pdf

https://foreshadowattack.eu/
http://www.ofirweisse.com/MICRO2019_NDA.pdf

L1TF in a Nutshell

● Shared μ-arch state can
be stolen

○ L1TF - L1 cache
○ MDS - other μ-buffers

● The state can be left by
previous context

● Or provoked by the attacker
○ Via calling an API

5

Roadmap
● The Speculative Attacks Threat
● L1TF Refresher
● Why Mitigation is Challenging
● Address Space Isolation (ASI)
● Initial Results

The Challenge: Mitigations are Hard

1. Stop speculation, e.g., with lfences everywhere
○ X Extremely slow

2. Stop side-channels - that’s a cat and mouse came
○ X E.g., L1D-cache, L1I-cache, BTB, branch-direction-predictor, etc. etc.

3. Stop speculation after branches
○ X Slow
○ X Error-prone

4. Scrub/flush secrets from state (L1 cache and other buffers)
○ X The attacker can trigger execution bringing data to these buffers
○ X The execution above can even be speculative!
○ X Async execution (interrupts), Hardware prefetch are additional vectors

5. HyperThreading complicates defenses event more!
○ X A sibling thread can snoop shared resources

7

8

Disabling HyperThreading infeasible (cost, performance, etc)

So what can we do?

● Secure core scheduling
○ Never run two VMs on the

same physical core

What mitigations are applied today? (1)

Disabling HyperThreading is costly for performance/capacity

So what can we do?

● Secure core scheduling
● Flush L1 cache on VMENTER

○ Expensive

9

What mitigations are applied today? (2)

Disabling HyperThreading is devastating for performance

So what can we do?

● Secure core scheduling
● Flush L1 cache on VMENTER
● On VMEXIT to hypervisor –

make sure other sibling core
is stunned (not running)
○ Very expensive

10

What mitigations are applied today? (3)

● On VMEXIT, interrupt handling may bring
into cache/uarch-buffers data that

○ Belongs to other guests or
○ Is a platform secret

● That data can later be stolen via, e.g., L1TF
○ By the VM running after VMENTER
○ By sibling core during hypervisor execution

What attack surface is open w/o constant flushes?

Guest OS
A

Guest OS
B

VMEXIT interrupt

Host

Guest A’s
stuff

Guest B’s
stuff

VMEXIT interrupt

Platform cred.

Speculative

Status quo: u-arch buffers are always (potentially) contaminated with secrets

Sad conclusion: Need to either a) stop speculation or b) continuously scrub state

Rethinking Mitigation - Understanding the Leak

Architectural

Secret Leakable
State

(L1D etc.)

Exposure

Speculative

Secret

Secret

Step 1: Accessing a secret Step 2: Leaking (“transmitting”) it

Step 3: Recovering the secrete

For more details: ofirweisse.com/MICRO2019_NDA.pdf

http://www.ofirweisse.com/MICRO2019_NDA.pdf

Speculative

Status quo: u-arch buffers are always (potentially) contaminated with secrets

Sad conclusion: Need to either a) stop speculation or b) continuously scrub state

Rethinking Mitigation - Understanding the Leak

Architectural

Secret Leakable
state Exposure

Speculative

Secret

Secret

Step 1: Accessing a secret Step 2: Leaking (“transmitting”) it

Step 3: Recovering the secrete

Speculative

Rethinking Mitigation - Limiting Exposure

Architectural
Leakable

state

Speculative

Secret

Step 1: Accessing a secret Step 2: Leaking (“transmitting”) it

We want a way to circumscribe access to secrets and leakable state.

We then apply protection only when secrets are “in flight”

Speculative

Idea: #PF as a fork between
speculative & non-spec exec

Architectural
Leakable

state

Speculative

Secret

Step 1: Accessing a secret Step 2: Leaking (“transmitting”) it

We want a way to circumscribe access to secrets and leakable state.

We then apply protection only when secrets are “in flight”

Page-fault Scrub state

Trivial example: Spectre V1 (bounds check bypass)

If index is out of bounds, “arr” might speculatively still be accessed.

Trivial example: Spectre V1 (bounds check bypass)

If index is out of bounds, “arr” might speculatively still be accessed.

If &arr[index] is not mapped in the page-table → page-fault

Question: When do we scrub clean??

Roadmap
● The Speculative Attacks Threat
● L1TF Refresher
● Why Mitigation is Challenging
● Address Space Isolation (ASI)
● Initial Results

● On most VMEXIT’s, the hypervisor
only touches

○ Current guest stuff
○ Non sensitive data at the host

Address Space Isolation - Premise

Guest OS
A

Guest OS
B

VMEXIT interrupt

Host

Guest A’s stuff Guest B’s stuff

VMEXIT interrupt

● Split kernel memory to
privileged and unprivileged-domains

● Each domain has a seperate
page-table

● Touching data out of a domain
results in a page-fault -
cannot be speculative

● At first, only include kernel addresses

Address Space Isolation - Basic Idea

Guest OS
A

Guest OS
B

VMEXIT interrupt

Host
ASI domain

1
ASI domain

2
Privileged
memory

Guest A’s stuff Guest B’s stuff

VMEXIT interrupt

● Split kernel memory to
privileged and unprivileged-domains

● Each domain has a seperate
page-table

● Touching data out of a domain
results in a page-fault -
cannot be speculative

● At first, only include kernel addresses
● ASI can be extended to include

userspace memory

Address Space Isolation - Basic Idea

Guest OS
A

Guest OS
B

VMEXIT interrupt

Host
ASI domain

1
ASI domain

2
Privileged
memory

Guest A’s stuff Guest B’s stuff

VMEXIT interrupt

//IOCTL KVM_RUN
for (;;) { // in vcpu_run()

// call vmx_vcpu_run()
asi_enter(); // Switch CR3 to unprivileged map
// VMENTER
// VMEXIT by the platform
// Try to handle exit, may touch

privileged data, which will cause
A page fault --> asi_exit()

}

ASI Lifecycle

Guest OS A Guest OS B
VMEXIT interrupt

Host
ASI

domain
1

ASI
domain

2
Privileged
memory

Guest A’s

stuff

Guest B’s

stuff

VMEXI

T

interrupt

Challenges
1. What data is OK to place within the unprivileged map?

a. Anything that belongs to the guest anyhow
b. Kernel maintenance structures which are used frequently and are not sensitive

2. How to handle PF/asi_exits within interrupts, nmi’s, etc.?
a. Must automatically re-asi_enter() when done

?

ASI as a replacement for KPTI
● KPTI switches page-tables upon entry/exit to the kernel
● ASI (sometimes) switches page-tables upon entry/exit from a VM
● The same approach can, therefore, replace KPTI

○ To minimize page-table switches

Process A Process B
syscall interrupt

ASI
domain

1

ASI
domain

2
Privileged
memory

Process A’s

stuff

Process B’s

stuff

syscall interrupt

kernel

Initial Results - Redis YCSB

Ratio of ASI-exits/VM-exits

Initial Results - Redis
Exit details

Initial Results - Redis
Exit details

Initial Results - Redis
Exit details

Initial Results - Redis
Exit details by allocation site

Summary - efficiently defeating speculative attacks
1. ASI redefines access-control based on the data

a. Namely, sensitive vs. non-sensitive data
b. Instead of based on control-flow: userspace vs. kernel

2. A allow-list approach is more sustainable than block-list
3. Apply expensive (e.g., L1D flush, stunning) mitigations only when necessary

a. Yields a complete and efficient solution

4. Can extend KPTI model and even improve performance
5. We want to integrate with concurrent efforts!

