The Light Weight JIT Compiler Project

Vladimir Makarov

RedHat

Linux Plumbers Conference, Aug 24, 2020

The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 1/35

Some context

@ CRuby is a major Ruby implementation written on C

@ Goals for CRuby 3.0 set up by Yukihiro Matsumoto (Matz)
in 2015
» 3 times faster in comparison with CRuby 2.0
» Parallelism support
» Type checking

@ IMHO, successful fulfilling these goals could prevent GO
eating Ruby market share

@ CRuby VM since version 2.0 has a very fine tuned
interpreter written by Koichi Sasada

» 3 times faster Ruby code execution can be achieved only by JIT

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 2/35

Ruby JITs

@ A lot of Ruby implementations with JIT
@ Serious candidates for CRuby JIT were

» Graal Ruby (Oracle)
» OMR Ruby (IBM)
» JRuby (major developers are now at RedHat)

@ |'ve decided to try GCC for CRuby JIT which I called MJIT
» MJIT simply means a Method JIT

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 3/35

Possible Ruby JIT with LibGCCJIT

CRuby LibGCCJIT

API

JIT Engine
(MJIT)

assembler file GAS + Collec2
+ Collec
’I_:|

so file

@ David Malcolm’s LibGCCJIT is a big step forward to use GCC for

JIT compilers

@ But using LibGCCJIT for CRuby JIT would

» Prevent inlining

* Inlining is important for effective using environment (couple thousand lines of
inlined C functions used for CRuby bytecode implementation)

» Make creation of the environment through LibGCCJIT APl is a tedious
work and a nightmare for maintenance

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020

4/35

Actual CRuby JIT approach with GCC

CRuby

JIT Engine
(MJIT)

C file

precompiled
header of
environment

so file

@ C as an interface language
» Stable interface

» Simpler implementation, maintenance and debugging

GCC
(+ GAS + Collect2)

» Possibility to use Clang instead of GCC
@ Faster compilation speed achieved by

» Precompiled header usage

» Memory FS (/tmp is usually a memory FS)

» Ruby methods are compiled in parallel with their execution

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020

5/35

LibGCCJIT vs GCC data flow

Environment creation Function creation Optimizations Assembler/LD Loading .so file LibGCC)T
through API calls through APl calls and Generation

) .) o ’) GCC
C header parsing C function parsing Optimizations Assembler/LD Loading .so file
(environment) and Generation

@ Red parts are different in LIBGCCJIT and GCC data flow

@ How to make GCC red part run time minimal?

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020

6/35

Header processing time

GCC -02 processing a function implementing 44 bytecode insns

800000 BN Optimizations & Generation

EEl Function Parsing

700000 A Emm Environment
600000 A
500000 -
400000 A
300000 -
200000
100000 -

04

Header Minimized Header Minimized PCH

GCC thousand executed x86-64 Insns

@ Processing C code for 44 bytecode insns and the environment
Linux Plumbers Conference, Aug 24, 2020 7/35

Performance Results — Test

@ Intel 3.9GHz i3-7100 with 32GB memory under x86-64 FC25

@ CPU-bound test OptCarrot v2.0 (NES emulator), first 2000 frames
@ Tested Ruby implementations:

» CRuby v2.0 (v2)

» CRuby v2.5 + GCC JIT (mjit)

CRuby v2.5 4+ Clang/LLVM JIT (mjit-1)

» OMR Ruby rev. 57163 (omr) in JIT mode
JRuby v9.1.8 (jruby9k)

jruby9k with invokedynamic=true (jruby9k-d)
Graal Ruby v0.31 (graal31)

v

v

v

v

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 8/35

Performance Results — OptCarrot (Frames per Sec)

FPS improvement

14 13.92
12 A
10 A
Q
=)
S 8
1)
& 6
41 3.17
2.83 238
21 _l 1.20 1.14 .
oL mar y |
v2 MJIT MJIT-L OMR JRuby9k JRuby9k-D Graal-31

@ Graal performance is the best because of very aggressive
speculation/deoptimization and inlining Ruby standard methods

@ Performance of CRuby with GCC or Clang JIT is 3 times better
than CRuby v2.0 one and second the best

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 9/35

Performance Results — CPU time

CPU time Speedup

2.00

1.75 4

1.50 A L>3 1.45
_‘gl 1.251 1.13
9 1.00 A ———— —_———— e L e e
= 0.79 0.76
¥ 0.75 A -

0.59

0.50 A

0.25 A

0.00 -

v2 MJIT MJIT-L OMR JRuby9k JRuby9k-D Graal-31

@ CPU time is important too for cloud (money) or mobile (battery)

@ Only CRuby with GCC/Clang JIT and OMR Ruby spend less CPU
resources (and energy) than CRuby v2.0

@ Graal Ruby is the worst because of numerous compilations of
speculated/deoptimized code on other CPU cores

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 10/35

Performance Results — Memory Usage

Peak memory overhead

103

102 4
>
Zz 33.98
5 10.67 e
g 10! 4
Y4
3
o

) -J““l““l““l““ B N

10—1 4
MIT MJIT-L MR JRuby9k JRuby9k-D Graal-31

e GCC/Clang compiler peak memory is also taken into account for
CRuby with GCC/Clang JIT

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 11/35

Official CRuby MJIT

@ The MJIT was adopted and modified by Takashi Kokubun and
became official CRuby JIT since version 2.6
e Major differences:
» Using existing stack based VM insns instead of new RTL ones

» No speculation/deoptimization

Much less aggressive JIT compilation thresholds
JITted code compaction into one shared object

* Solving under-utilization of page space (usually 4KB) for one method generated
code (typically 100-400 bytes) and decreasing TLB misses

Optcarrot performance is worse for official MJIT

v

v

v

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 12/35

GCC/LLVM based JIT disadvantages

e Big comparing to CRuby

@ Slow compilation speed for some cases

e Difficult for optimizing on borders of code written on different
programming languages

@ Some people are uncomfortable to have GAS (for LibGCCIJIT) or

GCC in their production environment

@ TLB misses for a lot of small objects generated with LibGCCJIT or
GCC

» Under-utilization of page space by dynamic loader for typical shared object

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 13/35

CRuby/GCC/LLVM Binary Size

| |
GCC-8 x86-64 g 2
cel =<
. . LLVM-8 clang
252V e " x86/x86-64 only
‘\CRuby-2.6> \
~ruby - N /
3.5MB))
63.4 MB

14/35

@ Scaled to the corresponding binary sizes
@ GCC and LLVM binaries are ~7-18 times bigger
v P Sy ¥ ¥ Y S 1 IS S S | Plumbers Conference, Aug 24, 2020

GCC/LLVM Compilation Speed

@ ~20ms for a small method compilation by GCC/LLVM (and MJIT)
on modern Intel CPUs
@ ~0.5s for Raspberry Pl 3 B+ on ARM64 Linux
» SPEC2000 Est 176.gcc: 320 (Pl 3 B+) vs 8520 (i7-9700K)
@ Slow environments for GCC/LibGCCJIT based JITs
» MingW, CygWin, environments w/o memory FS

@ Example of JIT compilation speed difference: Java implementation
by Azul Systems (LLVM 2017 conference keynote)
» 100ms for a typical Java method compiled with aggressive inlining by
Falcon, a tier 2 JIT compiler implemented with LLVM
» 1ms for the method compiled by a tier 1 JIT compiler

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 15/35

GCC/LLVM startup

Empty file vs 30 Line Preprocessed File Compilation

124 mm empty file
10 30 lines file
10-
104
911
g1} 18
- 195 & 0
3 8 1.7
£ 12y 129
o
£
S 64
=)
T
s}
44
24
ol

occ0° occ 02 cang aano 02

e x86.64 GCC-8/LLVM-8, Intel i7-9700K, FC29
@ Most time is spent in compiler (and assembler!) data initialization
» Builtins descriptions, different optimization data, etc

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 16 /35

Inlining C and Ruby code in MJIT

@ Inlining is the most important
JIT optimization

@ Many Ruby standard methods

are written on C
@ Adding C code of Ruby
standard methods to the
precompiled header
» Slower startup, slower
compilation

x =2; 10.times{ x *= 2}

times

Ruby

Precompiled

Header

Ruby C

CRuby JIT C file
Engine

(MJIT) so file

GCC
(+ GAS + Collect2)

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020

17/35

Some conclusions about GCC and LLVM JITs

@ GCC/LLVM based JITs can not be a good tier 1 JIT compiler
@ GCC/LLVM based JITs can be an excellent tier 2 JIT compiler

@ LibGCCJIT needs embedded assembler and loader analogous
what LLVM (MCJIT) has

@ LibGCCIJIT needs readable streamable input language, not only
API

@ GCC/LLVM based JITs need higher input language
@ GCC/LLVM based JITs need speculation support

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 18 /35

Light-Weight JIT Compiler

@ One possible solution is a light-weight JIT compiler in addition to
existing MJIT one:

» The light-weight JIT compiler as a tier 1 JIT compiler
» Existing MJIT generating C as a tier 2 JIT compiler for more frequently
running code
@ Or only the light-weight JIT compiler for environments where the
current MJIT compiler does not work
@ It could be a good solution for MRuby JIT

» It could help to expand Ruby usage from mostly server market to mobile
and |IOT market

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 19/35

MIR for Light-Weight JIT compiler

e My initially spare-time project:
» Universal light-weight JIT compiler based on MIR
@ MIR is Medium Internal Representation

» MIR means peace and world in Russian
» MIR is strongly typed
» MIR can represent machine insns of different architectures

@ Plans to try the light-weight JIT compiler first for CRuby or/and
MRuby

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 20/35

Example: C Prime Sieve

#define Size 819000

int sieve (int iter) {
int i, k, prime, count, n; char flags[Size];
for (n = 0; n < iter; n++) {

count = 0;
for (i = 0; i < Size; i++)
flags[i] = 1;

for (i = 2; i < Size; i++)
if (flags[i]) {
prime = i + 1;
for (k = i + prime; k < Size; k += prime)
flags[k] = 0;
count++;
}
}
return count;

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 21/35

Example: MIR Prime Sieve

m_sieve: module
export sieve
sieve: func 132, i32:iter
local i64:flags, i64:count, i64:prime, i64:n, i64:i, i64:k
alloca flags, 819000
mov flags, fp; mov n, O
loop: bge fin, n, iter
mov count, O; mov i, O
loop2: mov ui8:(flags, i), 1; add i, i, 1; blt loop2, i, 819000
mov i, 2
loop3: beq cont3, ui8:(flags,i), 0
add prime, i, 1; add k, i, prime
loop4: bgt fin4, k, 819000
mov ui8: (flags, k), O; add k, k, prime; jmp loop4
fin4d: add count, count, 1
cont3: add i, i, 1; blt loop3, i, 819000
add n, n, 1; jmp loop
fin: ret count
endfunc
endmodule
VIadimir Makarov (RedHat) [The Light Weight JIT Compiler Project (LI (iler o o ey

22/35

The Light-Weight JIT Compiler Goals

@ Comparing to GCC -02

» 70% of generated code speed

» 100 times faster compilation speed
» 100 times faster start-up

» 100 times smaller code size

@ Less 10K C LOC

@ No external dependencies — only standard C (no LIBFFI, YACC,
LEX, etc)

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 23/35

How to achieve the performance goals?

@ Use few most valuable optimizations
@ Optimize only frequent cases

@ Use algorithms with the best combination of simplicity (code size)
and performance

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 24 /35

How to achieve the performance goals?

@ What are the most valuable GCC optimizations for x86-647
» A decent RA
» Code selection

o GCC-9.0, i7-9700K under FC29

SPECInt2000 Est. | GCC -02 | GCC -O0 + simple RA + combiner
5458 | 4342 (80%)
6141 4339 (71%)

-fno-inline
-finline

Linux Plumbers Conference, Aug 24, 2020

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project

25/35

The current state of MIR project

C LLVM IR
MIR MIR
binary text
API—3 MIR
blnary text Generator
PPC64
BE/LE x86-64 aarch64 $390x

Vladimir Makarov (RedHat)

The Light Weight JIT Compiler Project

26 /35

Possible future directions of MIR project

c LLVM IR k—] Rust | - ;I\/,a

bli\:l:y 'Z)T WASM GCC C+t /tecode
NN

API—> MIR

. ‘
o] L] =] (8] Czze >

G
Java

bytecode

Generator

';Z(/:Leé x86-64 aarché4 $390x MIPS64 RISCV
Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020

27/35

MIR Generator

Global i
Common Dead Code Reachig
Mlﬂﬁl Simplify H Inline H Build CFG Sub-Expr —) Elimination — Deﬁnmo.nS
A Analysis
Sparse Conditional Loop Reaching Variable
Constant Invariant ~ K—— Definitions K—— Find Loops K—]
. . . Renaming
Propagation Code Motion Analysis
Machinize 3 Find Loops —> oL — Bl
Live Info Ranges
Optimizations -00
added ot
h -02 default
Fast Generator Assign Registers on eac -03
level:
Machine ¢ Generate ¢ Dead Code ¢ Combine ¢ .
Code Machine Code Elimination Insns Rewile

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020

28/35

Some MIR Generator Features

@ No Static Single Assignment Form
» In and Out SSA passes are expensive, especially for short initial

MIR-generator pass pipeline
» SSA absence complicates conditional constant propagation and global

common sub-expression elimination
» Plans to use conventional SSA for optimizations before register allocator

@ No Position Independent Code
» It speeds up the generated code a bit
» It simplifies the code generation

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 29/35

Possible ways to compile C to MIR

o LLVM IR to MIR or GCC Port

» Dependence to a particular external project
» Big efforts to implement
» Maintenance burden

@ Own C compiler
» Practically the same efforts to implement
* Examples: tiny CC, 8cc, 9cc
» No dependency to any external project

@ Considering GCC MIR port and MIR as input to LIBGCCJIT

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 30/35

C to MIR compiler

C files =4 Preprocessor Parser

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020

Context

Checker Generator

MIR

Tokens AST

C11 standard w/o standard optional variable arrays, complex, and

atomics

Augmented AST

No any tools, like YACC or LEX

» PEG (parsing expression grammar) parser

MIR
Code

Can be used as a library and from a command line

Passing about 1K C tests and successfully bootstrapped

Not call ABI compatible yet

31/35

Current MIR Performance Results

@ Intel i7-9700K under FC32 with GCC-8.2.1:

MIR-gen MIR-interp gee -02 gcc -00
compilation® | 1.0 (51us) 0.35 (18us) 393 (20ms) | 294 (15ms)
execution? 1.0 (2.78s) | 6.7 (18.6s) 0.95 (2.64s) | 2.18 (6.05s)
code size? | 1.0 (320KB) | 0.54 (173KB) | 80 (25.6MB) | 80 (25.6MB)
startup® 1.0 (10us) 0.5 (5us) 1200 (12ms) | 1000 (10ms)
LoC* 1.0 (17K) | 0.70 (12K) | 87 (1480K) | 87 (1480K)

Table: Sieve®: MIR vs GCC

1Best wall time of 10 runs (MIR-generator with -O1)

2Stripped size of ccl and minimal program running MIR code

3Wall time to generate code for empty C file or empty MIR function

4Size of minimal files to create and run MIR code or build x86-64 GCC compiler
528 lines of preprocessed C code, MIR is created through API

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020

32/35

Current MIR SLOC distribution
aarch64 gen. code x36-04 gen. code

_

ppc64 gen. code

~
\

Generator: Core

s390x gen. code

—

B Interpr.
~ ADT
S
C2MIR MIR API

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project

MIR Project Competitors

@ LibJIT started as a part of DotGNU Project

» 80K SLOC, GPL/LGPL License

» Only register allocation and primitive copy propagation
@ RyulJIT, a part of runtime for .NET Core

» 360K SLOC, MIT License

» MIR-generator optimizations plus loop invariant motion minus SCCP
» SSA

@ Other candidates:

» QBE: standalone+, small+ (10K LOC), SSA, ASM generation-, MIT
License

» LIBFirm: less standalone-, big- (140K LOC), SSA, ASM generation-,
LGPL2

» CranelLift: less standalone-, big- (70K LOC of Rust-), SSA, Apache License

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 34/35

MIR Project Plans

o First release at the end of this year
@ Short term plans:

» Prototype of MIR based JIT compiler in MRuby
» Make C to MIR compiler call ABI compatible

» Speculation support on MIR and C level
» Porting MIR to MIPS64 and RISCV

@ https://github.com/vnmakarov/mir

Vladimir Makarov (RedHat) The Light Weight JIT Compiler Project Linux Plumbers Conference, Aug 24, 2020 35/35

