2020 CTF dedup talk: speaker’s notes

Nick Alcock

August 25, 2020

Contents
1 CTF basics (offer to skip to save time) 1
1.1 encoding of C types in the type section 2
1.2 deduplication of this section necessary when linking before
you can look at linking anything else CTF-related 2
2 Type deduplication 2
2.1 Avoiding allocation nightmares 2
2.2 In brief: hashing, ambiguity detection and conflict marking,
EMISSION .« . v v v o e 2
2.3 Avoiding getting stuck in cycles: strategies 3
2.4 What doesn’t work Lo o 4
2.5 What worked o 4
2.6 Ambiguities and the popcon 5
2.7 Consequences for emission 6
3 Extension to other languages 7
4 Other stuff 7
5 Acknowledgements and prior art 8

1 CTF basics (offer to skip to save time)

In particular, this covers the parts that caused pain in the hope that others
doing the same thing can do what I ended up doing, and avoid the pain.

1.1 encoding of C types in the type section

1.2 deduplication of this section necessary when linking be-
fore you can look at linking anything else CTF-related

The rest of the linker only needs to get told how to map from input (CTF
section, type) pairs to the corresponding output type. This makes the al-
gorithm used to do deduplication relatively decoupled from the rest of the
CTF linker, let alone the linker as a whole

2 Type deduplication

2.1 Avoiding allocation nightmares

We use hashtabs in preference to other data structures because it’s very easy
to evolve them without having to revise a data structure first. But we’d like
to not have to malloc for every single thing we store in these hashtabs, and
for all the hashtab keys, simply to avoid filling the code with allocations
rather than useful work. A great many of the things we store fall into two
classes: hash values (SHA-1s) and references to types in input TUs. There
are relatively few hash values (one per deduplicated type), so we stash them
in an atoms table and store a pointer to that. But the input types... there
are many of these (in different data structures) per input type. We need
efficiency.

We use them as hashtab keys, so the only property that matters is that
a given type in a given input always has the same GID. (They are never
compared except for equality.)

Simple encoding on 64-bit platforms: high 32 bit is integer giving position
of input on link line (allowing for archives etc). Second 32 bit is ctf id_t.

On 32-bit, we stuff the (input integer, ctf id t) pair into a hashtab
and use the pointer to the key as the GID. Less efficient because we waste
memory on the hashtab, but 32-bit links are likely to be smaller than 64-bit
anyway (and 32-bit uses less memory in any case due to reduced alignment).
Seems to be a wash in testing, memory-wise.

2.2 In brief: hashing, ambiguity detection and conflict mark-
ing, emission

(time mark: 5:00)
We do deduplication by recursive hashing: types with identical hashes
are considered to be deduplicated and are emitted only once.

Three stages:

e hash every type in every TU recursively, TU by TU, mixing the hash
of all types cited by any type into the hash of that type (so "const int"
mixes in the hash of "int"). IDs and other internal details (which do
not affect type identity, and are a part of our representation, rather
than the type itself) are never mixed in. Remember mappings from
GID -> hash and vice versa. The set of hash values corresponds to the
deduplicated output if no types were ambiguously defined. We hash
each GID at most once, caching it so that other types referring to it
don’t cause us to go O(n"2).

This is tricky because we want identical types to end up with identical
hashes while also connecting opaque forwards to structures to a non-
opaque definition, if an unambiguous one can be found in some other
TU: but an opaque forward surely isn’t going to hash to the same value
as its non- opaque struct! That’s a puzzle for later. ..

This is linear-time in the number of types in input TUs.

e types can be ambiguous: e.g. two different TUs with the same-named
struct with different content. This is routine in C, and even seen in
practice in C++, despite the ODR. We spot these by hunting for types
with the same name (qualifying for struct/union/enum) but different
hashes, and mark such types and all the types that cite them as con-
flicting.

This is linear-time in the number of deduplicated types with names.

e emit everything by traversing the set of hashes, emitting types referred
to by each, from leaf to root (if not already emitted), then emitting
the types themselves.

This is linear-time in the number of deduplicated types.

2.3 Avoiding getting stuck in cycles: strategies

The C type system is acyclic, because of forwards (slide 8); but CTF is not
acyclic, because it cannot represent more than one instance of a given name
in a given namespace. It can encode forwards, but replaces forwards with
their referents if the referents are also added: so in this case we end up with
‘struct foo’, then ’struct bar’, each with a member that points to the other.
We'd like to collapse away forwards like this whenever possible, because it is
more convenient for users to see a struct than a forward with no members:

because of 1d -r, this means that inputs can contain cycles galore. Some
of these cycles can be huge (thousands of members), so O(n"2) algorithms
won’t work: when I broke the cache above, objcopy suddenly took hours to
link!

We treat structs and unions identically: so from now on, we call ’struct /union’
simply ’struct’.

Worse yet, given cycles, the algorithm above obviously doesn’t work!
We chase everything we can, so that CTF users can go from foo * to the
definition of ’foo’ and from ’bar %’ to ’bar’ — but now each of the steps above
can get stuck.

2.4 What doesn’t work

(time mark: 9:00)

I spent months on wrong tracks.

The obvious first approach is to try to come up with a representation of
the type graph in which no information about what types cite other types is
lost (and the graph structure is preserved), but where all cycles of the same
types are identical in all TUs. This is tricky given that we can enter a cycle
at any point and that cycles are often huge (libbfd contains cycles hundreds
of types long), but it can be done... but it still doesn’t work. [graph]
The problem is that, thanks to opaque forwards, a cycle in one TU is not a
cycle in all TUs, even if the types are the same and should be deduplicated.
[example]

2.5 What worked

(time mark: 11:00)

So we can’t keep the type graph completely intact: we have to break
cycles somehow, at least when forwards can point into the cycle (in some
other TU which we cannot see at the time we are hashing the cycle), and we
have to break them in a way that is the same in a TU where the cycle is visible
and in a TU where we only point into it, and we should also break them in a
way that somehow makes structures and forwards equivalent without mixing
all structures up.

We don’t want to do too much damage to the type graph — the limit
case would be declaring all types to be independent of all others and not
chasing cited types at all when hashing, which means we’d consider ’const
int’ to be identical to ’const char %’ (they’re both a const something after

all). What’s the least damage we can do to the type graph while eliminating
cycles?

We just saw why we can’t hash things differently if a type is in a cycle:
we might not know it’s in a cycle from inside this TU.

(graphviz examples)

The key is tagged structures/unions. Every cycle in the C type graph
must contain at least one of these, and forwards must be forwards to one
of these too. When we see a tagged struct/union or a forward to one while
hashing types to mix them in to a parent type, hash it as a stub. Stubs
are literally just the name of the struct/union: no content, no child types.
Stubs do not hash the same as anything but other stubs. (All actual types
get a lot more than just a type name mixed in, so this cannot collide with
anything else). Now a type that cites an opaque forward is hashed identically
to a type that cites its non-opaque equivalent, and we can deduplicate them
together.

This is not the only place we can get stuck in cycles, but it’s the trickiest
to resolve. More later.

Ludicrous types: the ’struct bfd’ cycle has a thousand-plus types in it,
and some of those types are defined differently for different targets!

2.6 Ambiguities and the popcon

(time mark: 16:00)

What if we have two TUs that both refer to a struct with the same name,
but that struct is different in both TUs? The algorithm above will consider
them identical, but they really aren’t. We have to fix this somehow.

Now we have a bunch of hashes, we can spot cases where a single C
type name has multiple distinct hashes associated with it. This is something
that cannot happen in a single TU: some type must have the same name
but a different definition in different TUs, i.e. it is ambiguous. CTF cannot
represent this in one dictionary, since a CTF dictionary roughly corresponds
to a C file-level scope: so we note this problem by marking such types
conflicted.

|[graph of conflicted marking|

A conflicted type is emitted into a child dictionary that is specific to one
TU: it can cite types in the shared dict but not types in other child dicts
(but since all of those types are ambiguous types in other TUs, this is fine).
However, since the shared dict has many child dicts, no shared type can cite
a type that is not shared: so we have to walk backwards up the type graph,
from types to the types that cite them, and mark them all conflicted too.

This is a waste of space which will be resolved in format v4... but also it
means we can get stuck in a cycle again! We resolve this in exactly the same
way: we break the graph of types-that-cite-this-type at tagged structures
and stop marking things as conflicted when we hit a tagged structure. This
also means we don’t have to move entire cycles into child dicts.

We can reduce the amount of conflicted types we generate by finding the
most- commonly-cited ambiguous type and not marking it conflicted, so it
can stay shared: so only the rarer types cause space bloat. (This is not yet
implemented for structures or unions, where we have to duplicate everything;:
v4 will fix this.)

(There is one other thing this pass does. If we get a hash collision of
a named type and an unnamed type, or of two named types, ambiguity
resolution will spot it and fix the problem by considering the two types
ambiguous. If we get a hash collision of two unnamed types, we don’t spot
it and we get a corrupted type graph, but this is massively unlikely and
I really don’t care about it: if it ever happens we can move to something
other than SHA-1 without affecting users at all. I frankly doubt anyone will
notice: our existing CTF emitter does nothing about ambiguous types at all
and just outright emits corrupted type graphs and nobody has noticed in
eight years other than me.)

2.7 Consequences for emission

(time mark: 19:00)

Actually emitting types is easy once we have all of this. We walk over
the hashes of all types we know about, leaf to root: we emit unconflicted
types into the shared dict and conflicted types into N dictionaries (one per
input TU in which that type appears). It is impossible for an unconflicted
type to cite a conflicted type at this point: if it happens we assert and die
because it must be a bug (and did we ever hit that assertion a lot during
debugging).

[graph]

There are two places where we have to do special things. Firstly, because
we stop marking things conflicted at tagged structures, we can have an
unconflicted type cite a conflicted tagged structure. We spot this and emit a
synthetic opaque forward (not corresponding to any forward in the input)
in the shared dict: this will need user intervention to climb past to get to
the real structure, but that’s unavoidable because there’s more than one
structure it might be and we have no idea which structure it is! (The input
C code literally doesn’t know: all it’s got is an opaque forward, but there are

several distinct structures with that name in different TUs. It takes semantic
knowledge to resolve this, and we don’t have it, but the user does.)

It’s not technically necessary to avoid cycles, but it does simplify things a
bit (and reduce the recursion depth) to emit structure members late. When
we emit a structure we don’t emit its members: we only note that its mem-
bers need to be emitted. Then we have another pass that whips through
all the structures we’ve noted we need to emit members for, and emit all of
them.

3 Extension to other languages

(time mark: 21:00)

I... haven’t thought about this much. For ObjC and possibly C++ the
algorithm should be almost unchanged: as with C the only cycles possible
are with tagged structs/unions/classes, I believe? (Though C++ is going to
need the most enormous extension to CTF: I will need input from people
who used C++ more recently to know what bits of the type graph it even
makes sense to encode for runtime lookup.)

4 Other stuff

There’s not very much left. We construct and export a mapping so the
rest of the CTF linker can tell what input type maps to what output type
(inefficiently — this is something that we can and will improve when we rip
out the old non- deduplicating linker so we don’t need to carry around a
mapping that works for it too).

We link other sections much more simplemindedly: very little deduplica-
tion is needed, because the type section dedup has done nearly everything for
us. The only complexity is in the function and object info sections, which in
the original Solaris model are big arrays with one entry per suitable symtab
entry (though a lot are elided), giving the types associated with that sym-
bol. This is obviously not acceptable for child dicts containing conflicted
types: so instead there we emit the arrays in arbitrary order, and have index
sections that map symbol names to array entries (this is also the same form
the compiler gives it to the linker in). We use this form if the extra cost of
storing the index sections is less than the cost of storing null entries in the
arrays corresponding to all the symtab entries that don’t use any types in
this child dict at all.

5 Acknowledgements and prior art

e libabigail, for proving that hashing types isn’t a disaster
e the BTF deduplicator, which uses a wildly different algorithm

e the previous DWARF -> CTF deduplicator I wrote, which is an object
lesson in how not to do it

e Solaris’s deduplicator, which is different again, and very Solaris- kernel-
specific

	CTF basics (offer to skip to save time)
	encoding of C types in the type section
	deduplication of this section necessary when linking before you can look at linking anything else CTF-related

	Type deduplication
	Avoiding allocation nightmares
	In brief: hashing, ambiguity detection and conflict marking, emission
	Avoiding getting stuck in cycles: strategies
	What doesn't work
	What worked
	Ambiguities and the popcon
	Consequences for emission

	Extension to other languages
	Other stuff
	Acknowledgements and prior art

