
1

Type deduplication in the CTF linker

Nick Alcock <nick.alcock@oracle.com>

mailto:nick.alcock@oracle.com


2

Very quick CTF basics

● Model of the C type system, without scopes (effectively, one translation 
unit, global scope)

● Many sections: this talk will focus on the types section, which almost all 
other sections reference

● Each TU gets a .ctf section generated by GCC, but nearly all these 
types come from headers, so are shared between TUs: but C being C, 
shared types can refer to non-shared types via opaque structs, etc.

● It is up to the linker to deduplicate these.

● Doing this efficiently without producing a terrible type graph presents 
some interesting challenges!

● Spec: http://www.esperi.org.uk/~oranix/ctf/ctf-spec/index.html, 
http://www.esperi.org.uk/~oranix/ctf/ctf-spec.pdf  

http://www.esperi.org.uk/~oranix/ctf/ctf-spec/index.html
http://www.esperi.org.uk/~oranix/ctf/ctf-spec.pdf


3

Some numbers!

● The algorithm we came up with is fairly efficient

● These are .ctf section sizes, so larger than the type section size

● These sizes will shrink!

Program Input size Largest TU Output size Compressed Time cost

GNU ld 4941163 167931 93815 52028 0.5s

libbfd 7960173 164000 262637 81523 1.5s

emacs 26.3 16672247 86267 303306 228780 5.5s



4

CTF type section basics

● An array of variable length entries: each is a struct 
ctf_stype (or struct ctf_type) with a kind recorded in it, 
followed by optional kind-dependent variable-length data (struct 
names and offsets, array bounds, etc).

● Each type has an ID derived from its index in the array: types 
can refer to other types by this ID.

● The deduplicator can create parent/child relationships between 
CTF dictionaries (with type IDs in distinct halves of the ID 
space: a dict is either a parent or a child, never both). You open 
a child then attach its parent to it. Types in a child dict can refer 
to types in the parent, but not vice versa (because you can 
open parent dicts on their own).

● Types form a graph, so it would seem that dedupping would be 
horrifically slow and painful (since everything is painful with 
graphs).



5

Linking CTF: The basics

● Nearly all the job of linking CTF is done by reusable code in binutils’s 
libctf.so: see in particular the functions starting ctf_link* in include/ctf-
api.h.

● Most of the work this does (in libctf/ctf-link.c) relates to sections other 
than the types section.

● Deduplicator interface is very narrow: all it has to provide back to the 
rest of the CTF linker is a mapping from a type ID in an input TU to an 
ID in the output. So we can ignore the rest of the machinery and focus 
on the deduplicator.



6

● We keep lots of references to deduplicated types (each of which is an 
SHA-1 hash value) and types in input TUs. We don’t want to malloc for 
either of these if possible. (It makes the code too ugly!)

● Hash values are easy: store them only once as hashtab keys: intern 
them as atoms

● Identifiers for input types are harder. There are a lot of them, of the form 
“this type in this TU”.  We use them as hashtab keys all over the place.

● Number input TUs (whether in .o files or in archive members) in the link 
line, and pack the number of the TU containing each type together with 
a 32-bit ctf_id_t into a ‘global ID’, or ‘GID’, which can usually get 
stuffed into a pointer. (The TU number is literally an array index.)

Avoiding allocation nightmares



7

The algorithm in three short steps

1) Hash every type in every TU (“input type”), recursively, hashing 
subtypes’ hashes into those of parents (a little simple caching 
means we only have to hash any given input type once): 
consider the hashes to be (hashes of) the output types.

2) Look across the set of named types for those where one name 
corresponds to multiple hashes: these types are ambiguous

3) Emit everything by traversing the set of type hashes from leaf 
to root, emitting each hash only once

This much is easy. The devil, as ever, is in the detail.



8

The problem in one word: cycles

● We would like users to be able to get from the type foo* to foo at all 
times: also from forwards and opaque references to struct foo or 
union foo to the real thing: ideally we want to eliminate opaque 
references completely. This is not mandatory, but obviously highly 
desirable.

● But this makes the C type system cyclic!

struct foo;

struct bar
  {
    struct foo *foo;
  };

struct foo
  {
    struct bar *bar;
  };



9

What doesn’t work

● The original plan was to  preserve the cycles, detect 
them, and stabilize them so that the same cycle’s 
types have the same hashes across all TUs they 
appears in.

● This fails because of opaque structs: they can be in a 
cycle in one TU but acyclic in another!

struct cyclic *

struct cyclic next

struct cyclic *

struct cyclic



10

Cycles: the right way

● Don’t do too much damage to the type graph

● We must break cycles, but where?

● If we break at every type (don’t recurse to subtypes at all), all 
types become identical! We must discriminate.

● Break at the one thing all cycles must have: tagged structs 
(or unions).



11

Cycles: the right way

● When we see a tagged struct or a forward to one while 
hashing types to mix them in to a parent type, hash it 
as a stub. Stubs are basically just the name of the 
struct. Stubs do not hash the same as anything but 
other stubs.

● Now the graph on the right works! struct cyclic * 
has the same hash value in both cases.

● This can turn even the most complicated cyclic type 
graph back into something acyclic. (e.g. ‘struct bfd’).

struct cyclic *

struct cyclic next

struct cyclic *

struct cyclic



12

typedef yes_cyclic_t

struct (yes_cyclic_t)
size_t bar

struct cyclic *foo

struct cyclic (stub)struct also_cyclic (stub)

struct cyclic *

yes_cyclic_t *typedef struct also_cyclic_t

struct also_cyclic * typedef int size_t

int

struct also_cyclic
also_cyclic *cycle

struct cyclic *another_cycle

struct cyclic

yes_cyclic_t *bar

struct cyclic *baz

also_cyclic_t quux



13

Ambiguity resolution

● What if we have types in two TUs that refer to a struct with the 
same name, but that struct is different in each TU? We only 
consider the name, so references to it hash to the same value!

● We can fix this by finding places where one C type name has 
multiple hashes (ambiguous types), and put all but one of those 
into (per-TU) child dicts (where they must be unambiguous).

● All types that cite ambiguous types also have to go into the same 
dict as the type they cite. All these child types together are known 
as conflicting types.



14

Cutting down conflicting forests

● Of course this means we can get stuck in cycles while marking things 
conflicting! We don’t want to emit whole cycles into child dicts anyway 
(50MiB of CTF for GNU ld because of three conflicting types deep under 
struct bfd: no!).

● Do not mark types that cite tagged structs or unions as conflicting. At 
emission time, emit a synthetic forward into the shared dict instead of 
conflicting structs.

● This is safe because if a structure T is ambiguous, opaque forwards to T 
are ambiguous too. So it’s fine to just give the user an opaque forward.

● We save a bit more space with a popularity contest; the most highly-cited 
type in an ambiguous set is shared.



15

The easy part: emitting types

● Walk over all type hashes (deduplicated types) from leaf to root, 
emitting each of them in turn, emitting conflicting types into multiple 
dicts and unconflicting types into only one.

● Forwards to the same type all hash to the same value as the type they 
refer to, so they collapse into their referents without our having to do 
anything

● We remember the input GID -> output ctf_id mapping for every type we 
emit, and use this to link types together

● We don’t emit struct members at this stage, so all cycles vanish: 
structs are emitted empty (CTF lets you add members to structs after 
initial insertion). Struct members get emitted later, after all types are 
emitted.



16

Future work

● Reduce memory consumption of libiberty hashtab: we use hashtabs 
as sets and create two hash tables per input type. Patch in progress 
that lets hashtabs share almost all their 100+ bytes of copy 
constructors etc

● Multithreading is possible to speed it up, but only programs with a 
great many types even see a slowdown. Probably best done as part 
of C++ work.



17

Other languages?

● Haven’t thought much about other languages. Languages in which 
many more sorts of things are cyclic might be problematic, but the 
general “hash all things that must be present in cycles as stubs 
when hashing child types” approach seems more or less valid 
regardless. In particular I think it should work fine in C++ (except 
adding classes to the set of things that constitute cycles).



18

References

● The algorithm: https://sourceware.org/git/?p=binutils-
gdb.git;a=blob;f=libctf/ctf-dedup.c;hb=HEAD#l28

● Other linking machinery: https://sourceware.org/git/?p=binutils-
gdb.git;a=blob;f=libctf/ctf-link.c;hb=HEAD (includes the entire 
obsolescent non-deduplicating linker)

● The API: https://sourceware.org/git/?p=binutils-
gdb.git;a=blob;f=include/ctf-api.h;hb=HEAD#l466


