

Accelerating ML workloads
using new GCC builtins

01

02

03

04

OpenBLAS

POWER10
MMA

Compiler
Builtins

Performance

BLAS
The BLAS (Basic Linear Algebra Subprograms)
are routines that provide standard building
blocks for performing basic vector and matrix
operations.

Level-1 BLAS perform scalar, vector and vector-
vector operations

Level-2 BLAS perform matrix-vector operations

Level-3 BLAS perform matrix-matrix operations

 Optimized implementations of linear algebra kernels for several
processor architectures.

 Default underlying library for many ML/DL frameworks.
 The source code distribution provides benchmarks for each BLAS

kernel.
 Added POWER10 support recently in OpenBLAS.
 Optimized GEMM [GEneral Matrix - Matrix] kernels.

POWER10 MMA

Most operations in training/inferencing in a neural network require some form of matrix multiplication.

Matrix Multiply Assist feature
● Eight 512 bit accumulators. Each accumulator contains four 128-bit rows

 4X4 array of fp32-bit elements 4x2 array of fp64-bit

● A set of instructions to transfer data between vector-scalar registers and accumulators.
● A set of outer product instructions that perform an outer-product operation.

Accumulators are updated by rank-k update instructions:

• Input: 1 accumulator (A) + 2 VSRs (X, Y)

• Output: 1 accumulator (same as input to reduce instruction encoding
space).

Outer-product (xv<type>ger<rank-k>)
instructions

The micro-kernel (innermost loop) of GEMM
Cm×n += Am×k × Bk×n

• Load a small,
“square” panel of C
and keep it in
registers
• Load one small
column of A and one
small row of B
• Outer-product and
accumulate
• Repeat!

Matrix-Multiply Assist Built-ins

● ISA 3.1 of the PowerPC added new Matrix-Multiply Assist (MMA) instructions

● GCC provides support for these instructions through the _builtin_mma_* built-in
functions

● Some of the builtins used now in OpenBLAS are:

void __builtin_mma_xvbf16ger2 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32ger (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gerpp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf64ger (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gerpp (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xxmtacc (__vector_quad *);
void __builtin_mma_xxmfacc (__vector_quad *);
void __builtin_mma_xxsetaccz (__vector_quad *);
void __builtin_mma_disassemble_acc (void *, __vector_quad *);
void __builtin_mma_disassemble_pair (void *, __vector_pair *);

Using new MMA builtins

● Hand written assembly version used in previous
versions for GEMM optimization.

● Started POWER10 optimization with assembly and later
converted to C code using built ins.

● Lines of code reduced from 6K to 1K for inner gemm
kernels.

● Performance is closer to assembly version.

● These builtins are also now used in Eigen.

* Up to 4x improvements noted in simulator depending
on various factors compared to previous processor.

Thank You!
References:

● https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Matrix-Multiply-Assist-Built-in-Functions.html

● https://github.com/xianyi/OpenBLAS/tree/develop/kernel/power

https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Matrix-Multiply-Assist-Built-in-Functions.html
https://github.com/xianyi/OpenBLAS/tree/develop/kernel/power

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

