LINUX
PLUMBERS

cN == Accelerating ML workloads
using new GCC bulltins

*OpenBLAS

POWER10
MMA

Compiler
Builtins

Performance

P

BLAS

The BLAS (Basic Linear Algebra Subprograms)
are routines that provide standard building
blocks for performing basic vector and matrix
operations.

Level-1 BLAS perform scalar, vector and vector-)
vector operations

Level-2 BLAS perform matrix-vector operations

Level-3 BLAS perform matrix-matrix operations —

; 27 Open BLAS

/' - An optimized BLAS library
\ '_ " Optimized implementations of linear algebra kernels for several
L B processor architectures.
= "\ " Default underlying library for many ML/DL frameworks.
! " The source code distribution provides benchmarks for each BLAS
kernel.

* Added POWER10 support recently in OpenBLAS.
" Optimized GEMM [GEneral Matrix - Matrix] kernels.

| * “U_i_u I n {_m

POWER10 MMA

Most operations in training/inferencing in a neural network require some form of matrix multiplication.

Matrix Multiply Assist feature
* Eight 512 bit accumulators. Each accumulator contains four 128-bit rows

4X4 array of fp32-bit elements 4x2 array of fp64-bit
[Apg Apg1 Qo2 Qg3 Aoo Qo1
140 Q11 Q12 Qg3 40 a11
A= A =
Qo Q1 Qpp Qp3 20 Q421
a.30 a31 a32 a33 a30 a31

* A set of instructions to transfer data between vector-scalar registers and accumulators.
* A set of outer product instructions that perform an outer-product operation.

Outer-product (xv<type>ger<rank-k>)
Instructions

single-precision 4 x 4
compute array

Accumulators are updated by rank-k update instructions:
Operand B: 128 bits

4 lanes
I
— z (npA e ’) + ACC[il[i] += ALl * B[]

General: weight * input

* Input: 1 accumulator (A) + 2 VSRs (X, Y)

 Output: 1 accumulator (same as input to reduce instruction encoding
pace).

Operand A: 128 bits
4 lanes

R m+ +
Accumulatar: 512 bits

Image: Kernel * Pixels

Cmxn += Amxk X Bkxn

l[l]]]ﬂ

n n n
|| (| |:|
m += m X + m X .+ m

The micro-kernel (innermost loop) of GEMM

* Load a small,
“square” panel of C
and keep itin
registers

* Load one small
column of A and one
small row of B

e Quter-product and
accumulate

* Repeat!

Matrix-Multiply Assist Built-ins

ISA 3.1 of the PowerPC added new Matrix-Multiply Assist (MMA) instructions

* GCC provides support for these instructions through the _builtin_mma_* built-in
functions

 Some of the builtins used now in OpenBLAS are:

void __builtin_mma_xvbfl6ger2 (__vector_quad *, vec_t, vec_t);

void _ _builtin_mma_xvf32ger (__vector_quad *, vec_t, vec_t),

void __builtin_mma_xvbfl6ger2pp (__vector_quad *, vec_t, vec_t),;
void __builtin_mma_xvf32gerpp (__vector_quad *, vec_t, vec_t);

void __builtin_mma_xvfé64ger (__vector_quad *, __vector_pair, vec_t),
void __ builtin_mma_xvfé64gerpp (__vector_quad *, __vector_pair, vec_t),;
void __builtin_mma_xxmtacc (__vector_quad *),

void __ _builtin_mma_xxmfacc (__vector_quad *);

void __builtin_mma_xxsetaccz (__vector_quad *),

void __builtin_mma_disassemble_acc (void *, __vector_quad *),;

void _ _builtin_mma_disassemble_pair (void *, __vector_pair *);

Using new MMA builtins

Hand written assembly version used in previous
versions for GEMM optimization.

Started POWER10 optimization with assembly and later
converted to C code using built ins.

Lines of code reduced from 6K to 1K for inner gemm
kernels.

Performance is closer to assembly version.
These builtins are also now used in Eigen.

* Up to 4x improvements noted in simulator depending
on various factors compared to previous processor.

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

Thank You!

References:

https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Matrix-Multiply-Assist-Built-in-Functions.html

https://github.com/xianyi/OpenBLAS/tree/develop/kernel/power

https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Matrix-Multiply-Assist-Built-in-Functions.html
https://github.com/xianyi/OpenBLAS/tree/develop/kernel/power

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

