
 
 

Accelerating ML workloads 
using new GCC builtins
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BLAS
The BLAS (Basic Linear Algebra Subprograms) 
are routines that provide standard building 
blocks for performing basic vector and matrix 
operations.

Level-1 BLAS perform scalar, vector and vector-
vector operations

Level-2 BLAS perform matrix-vector operations

Level-3 BLAS perform matrix-matrix operations



 
 

 Optimized implementations of linear algebra kernels for several 
processor architectures.

 Default underlying library for many ML/DL frameworks.
 The source code distribution  provides benchmarks for each BLAS 

kernel.
 Added POWER10 support recently in OpenBLAS.
 Optimized GEMM [GEneral Matrix - Matrix] kernels.



 
 

POWER10 MMA

Most operations in training/inferencing in a neural network require some form of matrix multiplication.

Matrix Multiply Assist feature
● Eight 512 bit accumulators. Each accumulator contains four 128-bit rows

      4X4 array of fp32-bit elements 4x2 array of fp64-bit 

● A set of instructions to transfer data between vector-scalar registers and accumulators.
● A set of outer product instructions that perform an outer-product operation.



 
 

Accumulators are updated by rank-k update instructions:

• Input: 1 accumulator (A) + 2 VSRs (X, Y)

• Output: 1 accumulator (same as input to reduce instruction encoding 
space).

Outer-product (xv<type>ger<rank-k>) 
instructions



 
 

The micro-kernel (innermost loop) of GEMM 
Cm×n += Am×k × Bk×n

• Load a small,
“square” panel of C
and keep it in
registers
• Load one small
column of A and one
small row of B
• Outer-product and
accumulate
• Repeat!



 
 

Matrix-Multiply Assist Built-ins

● ISA 3.1 of the PowerPC added new Matrix-Multiply Assist (MMA) instructions

● GCC  provides support for these instructions through the  _builtin_mma_* built-in 
functions

● Some of the builtins used now in OpenBLAS are:

void __builtin_mma_xvbf16ger2 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32ger (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gerpp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf64ger (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gerpp (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xxmtacc (__vector_quad *);
void __builtin_mma_xxmfacc (__vector_quad *);
void __builtin_mma_xxsetaccz (__vector_quad *);
void __builtin_mma_disassemble_acc (void *, __vector_quad *);
void __builtin_mma_disassemble_pair (void *, __vector_pair *);



 
 

Using new MMA builtins

● Hand written assembly version used in previous 
versions for GEMM optimization.

● Started POWER10 optimization with assembly and later 
converted to C code using built ins.

● Lines of code reduced from 6K to 1K for inner gemm 
kernels.

● Performance is closer to assembly version.

● These builtins are also now used in Eigen.

*  Up to 4x improvements noted in simulator depending 
on various factors compared to previous processor.



 
 

Thank You!
References:

● https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Matrix-Multiply-Assist-Built-in-Functions.html

● https://github.com/xianyi/OpenBLAS/tree/develop/kernel/power

https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Matrix-Multiply-Assist-Built-in-Functions.html
https://github.com/xianyi/OpenBLAS/tree/develop/kernel/power
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