
Address Space Isolation
(ASI)

Speculative execution protection

Google

Ofir Weisse, Junaid Shahid, Oleg Rombakh, and Paul Turner



The Speculative Attacks Threat
● These are μ-architectural attacks
● They break architectural boundaries

○ User/kernel boundary
○ Inter-process boundary
○ VM/host boundary

● They therefore compromise
○ Our customer’s data
○ Infrastructure (host) credentials

● Current mitigations are either
○ High overhead, or
○ Incomplete



What Can be Stolen

Guest OS A Guest OS B

Host
Platform creds

Guest data



Roadmap
● The Speculative Attacks Threat
● L1TF Refresher
● Why Mitigation is Challenging
● Address Space Isolation (ASI)

To learn more about speculative attacks:

foreshadowattack.eu

ofirweisse.com/MICRO2019_NDA.pdf

https://foreshadowattack.eu/
http://www.ofirweisse.com/MICRO2019_NDA.pdf


L1TF in a Nutshell

● Shared μ-arch state can 
be stolen

○ L1TF - L1 cache
○ MDS - other μ-buffers

● The state can be left by 
previous context

● Or provoked by the attacker
○ Via calling an API
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Roadmap
● The Speculative Attacks Threat
● L1TF Refresher
● Why Mitigation is Challenging
● Address Space Isolation (ASI)
● Initial Results



The Challenge: Mitigations are Hard

1. Stop speculation, e.g.,  with lfences everywhere
○ X Extremely slow

2. Stop side-channels - that’s a cat and mouse came
○ X E.g., L1D-cache, L1I-cache, BTB, branch-direction-predictor, etc. etc.

3. Stop speculation after branches
○ X Slow
○ X Error-prone
○ X Doesn’t stop L1TF, MDS, etc



The Challenge: Mitigations are Hard

1. Stop speculation, e.g.,  with lfences everywhere
○ X Extremely slow

2. Stop side-channels - that’s a cat and mouse came
○ X E.g., L1D-cache, L1I-cache, BTB, branch-direction-predictor, etc. etc.

3. Stop speculation after branches
○ X Slow
○ X Error-prone

4. Scrub/flush secrets from state (L1 cache and other buffers)
○ X The attacker can trigger execution bringing data to these buffers
○ X The execution above can even be speculative!
○ X Async execution (interrupts), Hardware prefetch are additional vectors

5. HyperThreading complicates defenses event more!
○ X A sibling thread can snoop shared resources
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Disabling HyperThreading infeasible (cost, performance, etc)

So what can we do?

● Secure core scheduling
○ Never run two VMs on the 

same physical core

What mitigations are applied today? (1)



Disabling HyperThreading is costly for performance/capacity

So what can we do?

● Secure core scheduling
● Flush L1 cache on VMENTER

○ Expensive
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What mitigations are applied today? (2)



Disabling HyperThreading is devastating for performance

So what can we do?

● Secure core scheduling
● Flush L1 cache on VMENTER
● On VMEXIT to hypervisor – 

make sure other sibling core 
is stunned (not running)
○ Very expensive
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What mitigations are applied today? (3)



● On VMEXIT, interrupt handling may bring 
into cache/uarch-buffers data that

○ Belongs to other guests or
○ Is a platform secret

● That data can later be stolen via, e.g.,  L1TF
○ By the VM running after VMENTER
○ By sibling core during hypervisor execution

What attack surface is open w/o constant flushes?

Guest OS
A

Guest OS 
B

VMEXIT interrupt

Host

Guest A’s 
stuff

Guest B’s 
stuff

VMEXIT interrupt

Platform cred.



● On VMEXIT, interrupt handling may bring 
into cache/uarch-buffers data that

○ Belongs to other guests or
○ Is a platform secret

● That data can later be stolen via, e.g.,  L1TF
○ By the VM running after VMENTER
○ By sibling core during hypervisor execution

● Block-list approaches, i.e., 
removing specific sensitive memory,
are may lead to a whac-a-mole 

What attack surface is open w/o constant flushes?

Guest OS
A

Guest OS 
B

VMEXIT interrupt

Host

Guest A’s 
stuff

Guest B’s 
stuff

VMEXIT interrupt

Platform cred.



Speculative

Status quo: u-arch buffers are always (potentially) contaminated with secrets

Sad conclusion: Need to either a) stop speculation or b) continuously scrub state 

Rethinking Mitigation - Understanding the Leak

Architectural

Secret Leakable
State

(L1D etc.)

Exposure

Speculative

Secret

Secret

Step 1: Accessing a secret Step 2: Leaking (“transmitting”) it

Step 3: Recovering the secrete

For more details: ofirweisse.com/MICRO2019_NDA.pdf

http://www.ofirweisse.com/MICRO2019_NDA.pdf


Speculative

Status quo: u-arch buffers are always (potentially) contaminated with secrets

Sad conclusion: Need to either a) stop speculation or b) continuously scrub state 

Rethinking Mitigation - Understanding the Leak

Architectural

Secret Leakable
state Exposure

Speculative

Secret

Secret

Step 1: Accessing a secret Step 2: Leaking (“transmitting”) it

Step 3: Recovering the secrete



Speculative

Rethinking Mitigation - Limiting Exposure

Architectural
Leakable

state

Speculative

Secret

Step 1: Accessing a secret Step 2: Leaking (“transmitting”) it

We want a way to circumscribe access to secrets and leakable state.

We then apply protection only when secrets are “in flight”



Speculative

Idea: #PF as a fork between 
speculative & non-spec exec

Architectural
Leakable

state

Speculative

Secret

Step 1: Accessing a secret Step 2: Leaking (“transmitting”) it

We want a way to circumscribe access to secrets and leakable state.

We then apply protection only when secrets are “in flight”

Page-fault Scrub state



Trivial example: Spectre V1 (bounds check bypass)

If index is out of bounds, “arr” might speculatively still be accessed.



Trivial example: Spectre V1 (bounds check bypass)

If index is out of bounds, “arr” might speculatively still be accessed.

If &arr[index] is not mapped in the page-table → page-fault

Question: When do we scrub clean??
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Concurrent efforts
Eventually - we need a complete solution for Linux

● Intel - unmap guest memory from the direct map (KVM protected memory)
○ One VM cannot access memory of another VM

● IBM - protecting containers
○ Allocate namespace-private memory
○ Per-process private (userspace) memory
○ Remove mapping from the global page-table

● Oracle
○ KVM address space isolation, similar to our effort (e.g. #pf-fork)

● Amazon
○ Allocate process local memory, removed from the direct map.



● On most VMEXIT’s, the hypervisor
only touches 

○ Current guest stuff
○ Non sensitive data at the host

Address Space Isolation - Premise

Guest OS
A

Guest OS 
B

VMEXIT interrupt

Host

Guest A’s stuff Guest B’s stuff

VMEXIT interrupt



● Split kernel memory to
privileged and unprivileged-domains

● Each domain has a seperate
page-table

● Touching data out of a domain 
results in a page-fault - 
cannot be speculative

● At first, only include kernel addresses

Address Space Isolation - Basic Idea

Guest OS
A

Guest OS 
B

VMEXIT interrupt

Host
ASI domain 

1
ASI domain 

2
Privileged 
memory

Guest A’s stuff Guest B’s stuff

VMEXIT interrupt



● Split kernel memory to
privileged and unprivileged-domains

● Each domain has a seperate
page-table

● Touching data out of a domain 
results in a page-fault - 
cannot be speculative

● At first, only include kernel addresses
● ASI can be extended to include 

userspace memory

Address Space Isolation - Basic Idea

Guest OS
A

Guest OS 
B

VMEXIT interrupt

Host
ASI domain 

1
ASI domain 

2
Privileged 
memory

Guest A’s stuff Guest B’s stuff

VMEXIT interrupt



//IOCTL KVM_RUN
for (;;) { // in vcpu_run()

// call vmx_vcpu_run()
asi_enter(); // Switch CR3 to unprivileged map
// VMENTER
// VMEXIT by the platform
// Try to handle exit, may touch 

privileged data, which will cause
A page fault --> asi_exit()

}

ASI Lifecycle

Guest OS A Guest OS B
VMEXIT interrupt

Host
ASI 

domain 
1

ASI 
domain 

2
Privileged 
memory

Guest A’s 

stuff

Guest B’s 

stuff

VMEXI

T

interrupt



What happens on a page-fault?
1. Call asi_exit() which will:
2. Call pre_asi_exit() callback which will

a. Stun sibling core
b. Log exit stat

3. Switch page table (CR3 in Intel) to the privileged
page-table Guest OS A Guest OS B

VMEXIT interrupt

Host

Guest A’s 

stuff

Guest B’s 

stuff

VMEXI

T

interrupt

ASI 
domain 

1

ASI 
domain 

2
Privileged 
memory



What happens on re-entry via asi_enter()?
1. Switch page table (CR3 in Intel) to the un-privileged

Page-table
2. Call post_asi_enter() callback which will

a. Flush L1D cache and any other uarch buffer
b. Unstun sibling core

Guest OS A Guest OS B
VMEXIT interrupt

Host

Guest A’s 

stuff

Guest B’s 

stuff

VMEXI

T

interrupt

ASI 
domain 

1

ASI 
domain 

2
Privileged 
memory



Challenges
1. What data is OK to place within the unprivileged map?

a. Anything that belongs to the guest anyhow
b. Kernel maintenance structures which are used frequently and are not sensitive

2. How to handle PF/asi_exits within interrupts, nmi’s, etc.?
a. Must automatically re-asi_enter() when done

?



Handling Interrupts

Guest OS A Guest OS B
VMEXIT interrupt

Host
ASI 

domain 
1

ASI 
domain 

2
Privileged 
memory

Guest A’s 

stuff

Guest B’s 

stuff

VMEXI

T

interrupt

//IOCTL KVM_RUN
for (;;) { // in vcpu_run()

// call vmx_vcpu_run()
asi_enter(); // Switch CR3 to unprivileged map
// Interrupt? We must re-enter!
// VMENTER
// VMEXIT by the platform
// Interrupt? Meh..
// Try to handle exit, may touch 

privileged data, which will cause
A page fault --> asi_exit()

}



Challenges
1. What data is OK to place within the unprivileged map?

a. Anything that belongs to the guest anyhow
b. Kernel maintenance structures which are used frequently and are not sensitive

2. How to handle PF/asi_exits within interrupts, nmi’s etc.?
a. Must automatically re-asi_enter() when done

3. Integration with KPTI
a. Eventually ASI will hopefully also replace KPTI. Both write to CR3.

4. How to manage dynamic allocations (kmalloc/vmalloc)?
a. Some allocations are process specific, others are system-wide
b. We want to avoid synchronization between page tables
c. We want to minimize system wide tlb-flushes

5. In nested virtualization, L1 guest memory should be protected from L2



ASI as a replacement for KPTI
● KPTI switches page-tables upon entry/exit to the kernel
● ASI (sometimes) switches page-tables upon entry/exit from a VM
● The same approach can, therefore, replace KPTI

○ To minimize page-table switches

Process A Process B
syscall interrupt

kernel
ASI 

domain 
1

ASI 
domain 

2
Privileged 
memory

Process A’s 

stuff

Process B’s 

stuff

syscall interrupt



Initial Results - Redis YCSB

Ratio of ASI-exits/VM-exits



Initial Results - Redis
Exit details



Initial Results - Redis
Exit details



Initial Results - Redis
Exit details



Initial Results - Redis
Exit details by allocation site



Challenges in managing dynamic memory
1. How to manage different allocations

a. kmalloc
b. vmalloc
c. per-cpu 

2. What does it mean for data to be non-sensitive?
a. Is memory non-sensitive for the current VM or system wide?



The KPTI Model - Control & Data Privilege

userspace userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Userspace 
page-table

Kernel
page-table

Direct map
via kmalloc

● We’ll ignore vmalloc space for now.
It is conceptually similar to direct map
  ● We’ll also ignore global vars
  

Not mapped

Privileged data

To mitigate Meltdown attacks, KPTI 
differentiates between privileged/unprivileged 
execution level. 

The methodology - using two page tables to 
separate between user space memory and 
kernel privileged memory.



The ASI Model - Data Privilege

userspace userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Userspace 
page-table

Global non-sensitive 
data

userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Global non-sensitive 
data

Not mapped

Privileged data

Non-sensitive dataKernel unrestricted
page-table

Kernel restricted
page-table

Kernel text, modules, 
globals

In ASI, we define privilege based on data 
access, not execution-level. We add another 
“restricted” page-table which only maps 
kernel non-sensitive data. 

Data is deemed non-sensitive if, when 
stolen by a malicious VM, does not pose a 
security threat to other VMs or cloud’s 
infrastructure. 

For performance reasons, we’re interested in 
memory that is accessed frequently by the 
kernel, when operating a VM between 
VMEXIT and VMENTER.



The ASI Model - Data Privilege

userspace userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Userspace 
page-table

Global non-sensitive 
data

userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Global non-sensitive 
data ● Non-sensitive data can be accessed freely, 

without the need for any L1TF mitigations

● Ignore for now  

● Access to “unmapped” area will cause a 
PF, which will switch to the unrestricted 
page-table. Use L1TF mitigation when 
switching (stunning/L1D-flush)

Not mapped

Privileged data

Non-sensitive dataKernel unrestricted
page-table

Kernel restricted
page-table

Kernel text, modules, 
globals



Challenge 1
Is data considered non-sensitive locally in a process 
or globally in the entire system? 

Examples:
1. Local data: VMCS, vcpu, file-descriptor-table
2. Global data: sk_buffs

All non-sensitive data in ASI can be read by a guest 
VM via an L1TF attack

While we want VM-1 to access its VMCS freely
we don’t want VM-1 to read the VMCS of VM-2!!

Data Privilege - The Locality Dilemma

userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Not mapped

Privileged data

Kernel unrestricted
page-table

Global non-sensitive 
data

Non-sensitive data

userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Kernel restricted
page-table

Global non-sensitive 
data

Kernel text, modules, 
globals



Partitioning Global/Local Data

Global kernel data

Process A data

Process B data

Other stuff we’ll ignore 
for now

Not mapped

Privileged data

Kernel unrestricted

Global non-sensitive 
data

Global non-sensitive data

userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Kernel restricted
Page-table
Process A

Global non-sensitive 
data

Local non-sensitive data
userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Kernel restricted
Page-table
Process B

Global non-sensitive 
data

Kernel text, modules, 
globals

Solution 1
Map local non-sensitive data to the specific 
process restricted table. Map global 
non-sensitive data to any ASI restricted 
table.



Partitioning Global/Local Data

Global kernel data

Process A data

Process B data

Other stuff we’ll ignore 
for now

Not mapped

Privileged data

Kernel unrestricted

Global non-sensitive 
data

Global non-sensitive data

userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Kernel restricted
Page-table
Process A

Global non-sensitive 
data

Local non-sensitive data
userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Kernel restricted
Page-table
Process B

Global non-sensitive 
data

Challenge 2:
What happens when we allocate global 
non-sensitive data? 

We need to update the page-tables of 
ALL processes on every allocation :( 

That can be prohibitively slow, 
depending on how many processes are 
running ASI.

Kernel text, modules, 
globals



Sharing Global Data Entries

Sensitive Area

Local non-sensitive 
area

Other stuff we’ll ignore 
for now

Not mapped

Privileged data

Kernel unrestricted
Page-table

Global non-sensitive 
area

Global non-sensitive data

userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Kernel restricted
Page-table
Process A

Global non-sensitive 
data

Local non-sensitive data
userspace

Global kernel data

Kernel text, modules, 
globals

Process A data

Process B data

Other stuff we’ll ignore 
for now

Kernel restricted
Page-table
Process B

Global non-sensitive 
data

Solution 2
Divide dynamic memory area into 2 
regions:
1. Global non-sensitive
2. Local non-sensitive

To avoid constant update of global 
non-sensitive area in all processes - 
share the PUD entries

Kernel text, modules, 
globals

Shared PMD tables



We manage all global non-sensitive allocations in a single “master-ASI” table.
If we get a PF in the global area, we pull the shared higher level page-table entry 
into the process ASI restricted-table

Dynamic Memory - Synchronization

Global non-sensitive data

Process A non-sensitive

Global non-sensitive data

Process B non-sensitive

Process A non-sensitive

Process B non-sensitive

Global non-sensitive data

Process A non-sensitive

Process B non-sensitive

Kernel unrestricted
Page-table

Kernel restricted
Page-table

Process A

Kernel restricted
Page-table

Process B

Global non-sensitive data

master-ASI
page-table

Shared “notched” intermediate tables



Alternative approach to partitioning the direct map

Partition the kernel address range dedicated to the direct map into two equal 
halves, with the upper half being an alias of the regular direct map.

Dynamic Memory - Aliasing

Aliased virtual 
address space

Direct map virtual 
address space

Physical memory



Alternative approach to partitioning the direct map

Partition the kernel address range dedicated to the direct map into two equal 
halves, with the upper half being an alias of the regular direct map.

Dynamic Memory - Aliasing

Aliased virtual 
address space

Direct map virtual 
address space kmalloc(size, ASI_FLAG) → address in aliased space

phys_to_virt/virt_to_phys etc. modified 

Reduces max supported RAM size by half, if 
implemented in a straightforward way 



In the restricted page tables, the aliased direct map only has local non-sensitive 
mappings, while the regular direct map only has global non-sensitive mappings

Dynamic Memory - Aliasing

Global non-sensitive data

Process A non-sensitive

Global non-sensitive data

Process B non-sensitive

Process A non-sensitive

Process B non-sensitive

Global non-sensitive data

Process A non-sensitive

Process B non-sensitive

Kernel unrestricted
Page-table

Kernel restricted
Page-table
Process A

Kernel restricted
Page-table
Process B

Global non-sensitive data

master-ASI
page-table

Shared PUD tables with holes

Global non-sensitive data

Process A non-sensitive

Process B non-sensitive

Process A non-sensitive

Process B non-sensitive

Process A non-sensitive

Process B non-sensitive

Process A non-sensitive

Process B non-sensitive

Global non-sensitive data Global non-sensitive data



Connecting All Efforts Together
● Eventually, Linux needs one complete solution
● Many similar use-cases - we should strive to merge

○ We need “union” of functionality for full protection

● There should be one paradigm/infrastructure to deal with 
○ Per-process memory
○ Namespace memory
○ VM memory
○ Global non-sensitive memory



Summary - efficiently defeating speculative attacks
1. ASI redefines access-control based on the data 

a. Namely, sensitive vs. non-sensitive data
b. Instead of based on control-flow: userspace vs. kernel

2. A allow-list approach is more sustainable than block-list
3. Apply expensive (e.g., L1D flush, stunning) mitigations only when necessary

a. Yields a complete and efficient solution

4. Can extend KPTI model and even improve performance
5. We want to integrate with concurrent efforts!



aerospike_ycsb



aerospike_ycsb



netperf



netperf



Which Accesses Cause ASI-exits



Which Accesses Cause ASI-exits



Sorting by memory allocation

What to do with unknown allocations?



Ratio of ASI-exits/VMEXIT’s
SPECCPU-2006, perlbench_r, partial run


