

● open source projects such as LiteX which have developed IP
(e.g. chip-level hardware design) needed for building an open
source SoC

● common workflow is that this SoC would be synthesized into a
bitstream and loaded into a FPGA

● SoC design is done in a Hardware Description Language
(HDL) with Verilog, VHDL, SystemVerilog or even newer
languages (Chisel, SpinalHDL, Migen). This means we have
the source and toolchain necessary to regenerate the design.

BoF: upstream drivers for open
source FPGA SoC peripherals

● LiteX [1] is a good example of an open source SoC framework
where it provides IP for common peripherals like DRAM
controller, Ethernet, PCIe, SATA, SD Card, Video and more.

● key design decision for these peripherals are Control and
Status Registers (CSR). The hardware design and the software
drivers must agree on the structure of these CSRs.

BoF: upstream drivers for open
source FPGA SoC peripherals

https://github.com/enjoy-digital/litex

● Linux-on-LiteX-Vexriscv [2] combines the Vexrisv core (32-bit
RISC-V), LiteX modules, and a build system which results in a
FPGA bitstream, kernel and rootfs

● Linux kernel drivers for LiteX are currently being developed out-
of-tree [3]

● LiteX SoC driver and LiteUART driver patch series from
Mateusz Holenko of AntMicro is currently in v10 [4]

BoF: upstream drivers for open
source FPGA SoC peripherals

https://github.com/litex-hub/linux-on-litex-vexriscv
https://github.com/litex-hub/linux/commits/litex-vexriscv-rebase/drivers
https://lore.kernel.org/patchwork/project/lkml/list/?series=457681

● Earlier this year, support for Microwatt, a POWER-based core
from IBM, was been added to LiteX by Ben Herrenschmidt

● Ben started a linux-litex thread of how best structure the LiteX
CSRs and driver code for upstream [5]

● Issue: should drivers use CSR accessors or normal MMIO?

● Issue: should Linux drivers support 8-bit CSR or just 32-bit?

● Issue: how to describe what exists? Device tree overlays?

BoF: upstream drivers for open
source FPGA SoC peripherals

https://groups.google.com/d/msg/linux-litex/fJLlcsuBibY/3vP8_7nGAwAJ

● Martin Perens is developing LiteDIP [6]:
"Plug-and-play LiteX-based IP blocks enabling the creation of
generic Linux drivers. Design your FPGA-based SoC with them
and get a (potentially upstream-able) driver for it instantly!"

● Martin wrote a blog post: "FPGA: Why So Few Open Source
Drivers for Open Hardware?" [7]

BoF: upstream drivers for open
source FPGA SoC peripherals

https://gitlab.freedesktop.org/mupuf/litedip/
https://mupuf.org/blog/2020/06/09/FPGA-why-so-few-drivers/

[1] https://github.com/enjoy-digital/litex
[2] https://github.com/litex-hub/linux-on-litex-vexriscv
[3] https://github.com/litex-hub/linux/commits/litex-vexriscv-rebase/drivers
[4] https://lore.kernel.org/patchwork/project/lkml/list/?series=457681
[5] https://groups.google.com/d/msg/linux-litex/fJLlcsuBibY/3vP8_7nGAwAJ
[6] https://gitlab.freedesktop.org/mupuf/litedip/
[7] https://mupuf.org/blog/2020/06/09/FPGA-why-so-few-drivers/

BoF: upstream drivers for open
source FPGA SoC peripherals

https://github.com/enjoy-digital/litex
https://github.com/litex-hub/linux-on-litex-vexriscv
https://github.com/litex-hub/linux/commits/litex-vexriscv-rebase/drivers
https://lore.kernel.org/patchwork/project/lkml/list/?series=457681
https://groups.google.com/d/msg/linux-litex/fJLlcsuBibY/3vP8_7nGAwAJ
https://gitlab.freedesktop.org/mupuf/litedip/
https://mupuf.org/blog/2020/06/09/FPGA-why-so-few-drivers/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

