
glibc and system call wrappers

Florian Weimer, Red Hat Platform Tools Team

Virtual Linux Plumbers, 2020-08-28

1 / 17

Outline

I Why do we have system call wrappers?
I How can we add them to glibc?
I Do we actually want to do that?
I What can the kernel do to make things easier?

I Poll: What do you work on?
I A: kernel, B: userspace toolchain (compiler, core libraries),

C: other userspace, D: something else

2 / 17

What are system call wrappers?

I off64_t lseek(int fd, off64_t off, int whence);

lseek: movl $8, %eax /* syscall number */

syscall

cmpq $-4096, %rax /* magic errno limit */

ja 1f /* handle error */

ret

1: movq __libc_errno@gottpoff(%rip), %rdx

negl %eax

movl %eax, %fs:(%rdx) /* update errno TLS */

movq $-1, %rax

ret

3 / 17

Why bother?

I Can we just use a generic wrapper?
I syscall(__NR_lseek, fd, 0, SEEK_SET);

4 / 17

Why bother? Portability!

I Need to use the correct types:
syscall(__NR_lseek, fd, (off64_t) 0, SEEK_SET);

I Need to use the correct system call:
off64_t off;

syscall(__NR__llseek, fd, 0L, 0L, &off, SEEK_SET);

I This is more common than you would think (open→ openat,
futex→ futex_time64).

5 / 17

glibc lseek (without symbol management)

off64_t lseek (int fd, off64_t offset, int whence)

{

#ifdef __NR__llseek

loff_t res;

int rc = INLINE_SYSCALL_CALL (_llseek, fd,

(long) (((uint64_t) (offset)) >> 32),

(long) offset, &res, whence);

return rc ? rc : res;

#else

return INLINE_SYSCALL_CALL (lseek, fd, offset, whence);

#endif

}

6 / 17

glibc implementation options

I C with INLINE_SYSCALL_CALL: automatic errno
handling

I C with INTERNAL_SYSCALL_CALL: no errno updates
I Auto-generated assembler via syscalls.list
I Manual assembler (only required in exceptional cases)

7 / 17

glibc’s system call wrapper requirements

I Copyright assignment
I Determining the appropriate header file and API scope

(POSIX/standard vs GNU vs Linux)
I Should the wrapper imply a cancellation point? (No.)
I Finding the right place in the source tree: misc or

sysdeps/unix/sysv/linux

I Versions file and ABI list updates
I Minimal test case
I Update to the glibc manual (GFDL-licensed)
I NEWS file update

8 / 17

Contributing wrappers: Help wanted!

I I would have liked to include a tutorial here, but even now,
every system call is a little bit different:
I Adding new header file customization points for GNU vs

Linux variance (e. g. for <unistd.h>)
I Writing entirely new sections in the manual explaining

concepts that can be referenced (*at functions)
I Container-based testing might be needed, maybe with test

harness enhancements.
I It’s still difficult to predict what you might encounter.

I But we will help you if you want to implement a wrapper
and walk you through the process.

9 / 17

State on the glibc side

I There is consensus for adding wrappers, unless the system
call is obsolete or breaks core userspace invariants.

I Case in point: gettid (finally added in glibc 2.30)
I There is still a substantial backlog.
I Manual updates for core undocumented concepts (such as

*at-based pathname resolution) are under way.
I So far, we ignore the downsides of adding wrappers.

10 / 17

Downsides of wrappers

I New wrappers add new symbols to the glibc ABI.
I Current policy is that the ABI does not change within one

glibc release.
I Up to six months waiting time.

I Distributions do not backport wrappers.
I /lib64/libc.so.6: version ‘GLIBC_2.30’

not found when trying to run a program that uses
gettid on glibc 2.28.

I Backports are difficult for some RPM-based distributions
due to their dependency management.

I Up to three years waiting time, maybe more.

11 / 17

Downsides of wrappers

I Emulation in userspace is tempting, but rarely a good idea.
Latest example was copy_file_range.

I Potential exception: Call the flag-less system call variant if
the caller passes a zero flag.
I Even that does not always work, see nanosleep vs

clock_nanosleep

I Adoption of new system calls breaks browsers,
systemd-nspawn (the EPERM vs ENOSYS issue).
Availability of wrappers may speed this up.

12 / 17

Downsides of wrappers

I glibc’s wrappers cannot be used in all contexts, e. g.,
missing thread control block (TCB) after clone.
I Reporting failure via errno needs the TCB for TLS.
I Stack protector instrumentation needs the TCB for the

canary on many targets.
I setxid broadcast
I POSIX cancellation handling
I Lazy binding might call into the dynamic loader.

I Even experienced programmers do not know of these
restrictions.
I This topic is related to asynchronous signal safety and

asynchronous cancellation safety.
I (syscall shares some of these problems.)

13 / 17

New kind of wrappers for glibc?

I syscallresult64 _G_lseek(int,off64_t,int);

I In-line error signaling is used, like the usual kernel/userspace
ABI.

I The wrappers are statically linked hidden functions symbol.
I No ABI change to shared objects helps with backporting.

I The wrappers are built specifically for no TCB dependency at all.
I They are not cancellation points.
I They are usable after clone.

I This avoids posix_spawn feature creep.

14 / 17

Can the kernel make this easier?

I No more multiplexers, please.
I syscall(__NR_FUTEX, &futex, FUTEX_WAIT_PRIVATE,

1, NULL, NULL, 0);
I futex(FUTEX_WAIT_PRIVATE, 1, NULL, NULL, 0);

I It still needs porting to futex_time64, even though
struct timespec is not actually used.

I Multiplexers can break with ILP32 target variants if
variadic arguments are not promoted correctly for use
with the kernel/userspace ABI.

I Lazy Linux interface emulators break probing.
int sync_file_range(int, off64_t, off64_t, unsigned)

{

// There are no observable side effects, right?!

return 0;

}

15 / 17

Can the kernel make this easier?

I Enable generic system calls for all architectures at the
same time.
I Already much improved, I think.

I Use appropriate types.
I unsigned for flag arguments (not long).
I size_t for byte sizes (not int)

I Pass 64-bit arguments in memory.
I off64_t * in copy_file_range is nice.

16 / 17

Can the kernel make this easier?

I Conventions for extensions with which programmers
become familiar over time (see Christian Brauner’s talk).

I But do we actually need extensible system calls? How
costly is it to add more system calls instead?

I Feature bitmaps may help imperfect emulators (indicating
vfork-as-fork, for example).

I Maybe the kernel can do something to help with the
sandboxing issues surrounding new system calls.

17 / 17

