glibc and system call wrappers

Florian Weimer, Red Hat Platform Tools Team

Virtual Linux Plumbers, 2020-08-28

117

Outline

Why do we have system call wrappers?

How can we add them to glibc?

Do we actually want to do that?

What can the kernel do to make things easier?

» Poll: What do you work on?

» A: kernel, B: userspace toolchain (compiler, core libraries),
C: other userspace, D: something else

2/17

What are system call wrappers?

» off64_t 1lseek(int fd, off64_t off, int whence);

lseek:

movl $8, %eax /* syscall number */
syscall

cmpqg $-4096, %rax /* magic errno limit */
ja 1f /* handle error */

ret

movq __libc_errno@gottpoff(%rip), %rdx

negl %eax

movl %eax, %fs:(%rdx) /* update errno TLS */
movq $-1, %rax

ret

3/17

Why bother?

» Can we just use a generic wrapper?
» syscall(__NR_1lseek, fd, ©, SEEK_SET);

4/17

Why bother? Portability!

» Need to use the correct types:
syscall(__NR_1lseek, fd, (off64_t) ©, SEEK_SET);

» Need to use the correct system call:

off64_t off;
syscall(__NR__11lseek, fd, OL, OL, &off, SEEK_SET);

» This is more common than you would think (open — openat,
futex — futex_time64).

5/17

glibc Lseek (without symbol management)

off64_t 1lseek (int fd, off64_t offset, int whence)
{
#ifdef _ NR__ 1lseek
loff_t res;
int rc = INLINE_SYSCALL_CALL (_1llseek, fd,
(long) (((uinté4_t) (offset)) >> 32),
(long) offset, &res, whence);
return rc ? rc : res;
#else
return INLINE_SYSCALL_CALL (1lseek, fd, offset, whence);
#endif

}

6/17

glibc implementation options

» C with INLINE_SYSCALL_CALL: automatic errno
handling

» C with INTERNAL_SYSCALL_CALL: no errno updates
» Auto-generated assembler via syscalls. list
» Manual assembler (only required in exceptional cases)

7/17

glibc’s system call wrapper requirements

vy

vvvyyy

Copyright assignment

Determining the appropriate header file and API scope
(POSIX/standard vs GNU vs Linux)

Should the wrapper imply a cancellation point? (No.)

Finding the right place in the source tree: misc or
sysdeps/unix/sysv/linux

Versions file and ABI list updates

Minimal test case

Update to the glibc manual (GFDL-licensed)
NEWS file update

8/17

Contributing wrappers: Help wanted!

» | would have liked to include a tutorial here, but even now,
every system call is a little bit different:
» Adding new header file customization points for GNU vs
Linux variance (e.qg. for <unistd.h>)
» Writing entirely new sections in the manual explaining
concepts that can be referenced (*at functions)
» Container-based testing might be needed, maybe with test
harness enhancements.
» |t’s still difficult to predict what you might encounter.

» But we will help you if you want to implement a wrapper
and walk you through the process.

9/17

State on the glibc side

» There is consensus for adding wrappers, unless the system
call is obsolete or breaks core userspace invariants.

» Casein point: gettid (finally added in glibc 2.30)
» There is still a substantial backlog.

» Manual updates for core undocumented concepts (such as
*at-based pathname resolution) are under way.

» So far, we ignore the downsides of adding wrappers.

10/17

Downsides of wrappers

» New wrappers add new symbols to the glibc ABI.
» Current policy is that the ABI does not change within one
glibc release.
» Up to six months waiting time.
» Distributions do not backport wrappers.
» /1ib64/1ibc.so0.6: version ‘GLIBC_2.30’
not found when trying to run a program that uses
gettid onglibc 2.28.
» Backports are difficult for some RPM-based distributions
due to their dependency management.
» Up to three years waiting time, maybe more.

17

Downsides of wrappers

» Emulation in userspace is tempting, but rarely a good idea.
Latest example was copy_file_range.

» Potential exception: Call the flag-less system call variant if
the caller passes a zero flag.

» Even that does not always work, see nanosleep vs
clock_nanosleep

» Adoption of new system calls breaks browsers,
systemd-nspawn (the EPERM vs ENOSYS issue).
Availability of wrappers may speed this up.

12/17

Downsides of wrappers

» glibc’s wrappers cannot be used in all contexts, e. g,
missing thread control block (TCB) after clone.
» Reporting failure via errno needs the TCB for TLS.
» Stack protector instrumentation needs the TCB for the
canary on many targets.
» setxid broadcast
» POSIX cancellation handling
» Lazy binding might call into the dynamic loader.

» Even experienced programmers do not know of these
restrictions.
» This topic is related to asynchronous signal safety and
asynchronous cancellation safety.
» (syscall shares some of these problems.)

13/17

New kind of wrappers for glibc?

v

syscallresult64 _G_lseek(int,off64_t,int);

In-line error signaling is used, like the usual kernel/userspace
ABI.

The wrappers are statically linked hidden functions symbol.
» No ABI change to shared objects helps with backporting.

The wrappers are built specifically for no TCB dependency at all.

They are not cancellation points.
They are usable after clone.
» This avoids posix_spawn feature creep.

14/17

Can the kernel make this easier?

» No more multiplexers, please.
> syscall(__NR_FUTEX, &futex, FUTEX_WAIT_PRIVATE,
1, NULL, NULL, 0);
> futex(FUTEX_WAIT_PRIVATE, 1, NULL, NULL, 0);
» It still needs porting to futex_time64, even though
struct timespec is not actually used.

> Multiplexers can break with ILP32 target variants if
variadic arguments are not promoted correctly for use
with the kernel/userspace ABI.

» Lazy Linux interface emulators break probing.
int sync_file_range(int, off64_t, off64_t, unsigned)

// There are no observable side effects, right?!
return 0;

}

15/17

Can the kernel make this easier?

> Enable generic system calls for all architectures at the
same time.

» Already much improved, | think.
» Use appropriate types.

» unsigned for flag arguments (not Long).
» size_t for byte sizes (not int)

» Pass 64-bit arguments in memory.
> off64_t *incopy_file_range is nice.

16/17

Can the kernel make this easier?

» Conventions for extensions with which programmers
become familiar over time (see Christian Brauner’s talk).

» But do we actually need extensible system calls? How
costly is it to add more system calls instead?

» Feature bitmaps may help imperfect emulators (indicating
vfork-as-fork, for example).

> Maybe the kernel can do something to help with the
sandboxing issues surrounding new system calls.

17/17

