§ . libm/ibgcc math BoF

' LINUX

PLUMBERS . _
b N Considerations for
\ Performance vs Accuracy
| Tradeoffs
y" patrick.mcgehearty@oracle.gom

Q | libm/libgcc math BoF
<" Accuracy vs Performance

=7 LINUX

PLUMBERS .
CONFERENCE. EXamples:

m w2220 @ Complex sqrt() - major accuracy gain,
- small loss of performance

N * Exp() change — tiny loss of accuracy,
huge performance gain
e Can we identify principles for deciding when these
& types of changes are appropriate?

= * Other math libs topics

Q | libm/libgcc math BoF
._ Complex Divide example

=¥ LINUX
PLUMBERS
CONFERENCE
R August 24-28, 2020 o))]
S Proposed complex divide accuracy improvement for libgcc. Major
_ -\\ \ accuracy improvement with clear loss of performance.
|
Current methods get massively wrong answers when encountering
large or small exponents (>1.6% of time over full range of inputs).
_/F ' Proposed fix has minor performance effect for all cases:. —~\

" 4 ./:

[I

r

|

y r
4 }
3 |

Q | libm/libgcc math BoF

Complex Divide

LINUX Current libgcc complex divide algorithm: For e+fi = (a+bi)/(c+di):
PLUMBERS
CONFERENCE if(fabs(c) <fabs(d) {
N ratio = c/d;
. t = (c*ratio + d);
-\ ! e = ((a*ratio) + b) / t;
f = ((b*ratio) — a) / t;
} else {
ratio = d/c;

t = (c + d*ratio);

/ e = ((b*ratio) + a); P
:/. f = (b — (a*ratio)) /t; f:\\

(plus cleanup code to handle infinities and NaN)

§ libm/libgcc math BoF
Complex Divide Accuracy

=¥ LINUX Errors/10 million test values
PLUMBERS

8 | CONFERENCE Greater than: 8 ulp 12 ulp 16 ulp 48 ulp
— A: Current complex div 1.77% 1.70% 1.63% 1.18%

T B: Test “ratio” underflow 0.0425% 0.0346% 0.0279% 0.0172%
C: Scale inputs as needed 0.00011% 0.00001% 0.00001% 0.0%

» A - current cdiv, 1.6% answers are seriously wrong. ==
- B - gains almost 2 orders of magnitude improvement
~ C - gains another 3 orders of magnitude . —\ !

- Ulp = units last place, 16 ulp means at least 16 low -2
- bits of either real or imag portion are wrong.

|

6 -

LINUX
PLUMBERS
CONFERENCE

August 24-28, 2020

—

libm/libgcc math BoF
Complex Divide Perf Cost

Scaled to current = 1.00 x86 x86 arme4 armo64
Larger values mean slower small full small full

A: Current complex div 1.00 1.00 1.00 1.00
B: Test “ratio” underflow 099 121 1.05 1.44
C: Scale inputs as needed 1.10 1.36 1.32 1.75

Small case limits exponents to 1/2 full range; Full case tests full range.

Perf cost varies with architecture. Related to branch prediction.e\ffectiveness.

(B) has mininal cost for 100 times fewer wrong answers | &
(C) modest cost for 100,000 times fewer wrong answers.

* Marketing benchmarkers resist any perf reductions. =3
Use -fcx-limited-range if current behavior desired

r

Q 1 libm/libgcc math BoF

exp() example

. .-””""L,NUX Recent change to exp() [glibc 2.28] by Siddensh

PLUMBERS Pgyarekar - large perf improvement, small loss accuracy
CONFERENCE

Fe. August 24-28, 2020

- When true value was near 0.5 least bit of precision, old
1+ method used SW multi-precision to determine final bit
rounding. New method removes calls to multi-precision.

Only those cases affected. Maximum error is O. 55 ulp.
Performance gain is 10,000x.

s | l/ .\ \l

[y Change supported by libc-alpha. Reported at Cauldron
—— 2019 that some academics were shocked at t'he change

T | -

L

Q) libom/libgcc math BoF

= LINUX - . . :
slumeers VVhat criteria or considerations should developers and

CONFERENCEreviewers use when evaluating accuracy vs performance

tradeoffs?

R We are somewhere between academic “precision over
all else” and marketing “performance over all else”.

#» Perhaps best precision bounded by ‘reasonable’

performance? -/"\\

g
| |
|
|
i

§ 4 libm/libgcc math BoF

=3 LINUX

PLUMBERS

Possible considerations:

CONFERENCE

Fe August 24-28, 2020

R

Predictability of performance (exp example)?
Rarity of wrong answers?

Size of errors? (1 or 2 ulp vs >20 ulp)

Input from audience? &

| LJ _' libm/libgcc math BoF

Other math lib Topics

=7 LINUX
PLUMBERS

CONFERENCE, . : :
w2 2oL IDM NAS SEEN Many improvements in recent years

"%, Are there areas known to still need work?
Accuracy improvement? Performance improvement?

F=

Are there people working on issues?

D
-~ Other issues? ' f'm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

