

libm/libgcc math BoF

Considerations for
Performance vs Accuracy

 Tradeoffs

patrick.mcgehearty@oracle.com

libm/libgcc math BoF
Accuracy vs Performance

● Examples:
● Complex sqrt() - major accuracy gain,

 small loss of performance
● Exp() change – tiny loss of accuracy,

 huge performance gain
● Can we identify principles for deciding when these

types of changes are appropriate?

● Other math libs topics

libm/libgcc math BoF
Complex Divide example

Proposed complex divide accuracy improvement for libgcc. Major
accuracy improvement with clear loss of performance.

Current methods get massively wrong answers when encountering
large or small exponents (>1.6% of time over full range of inputs).

Proposed fix has minor performance effect for all cases.

libm/libgcc math BoF
Complex Divide

Current libgcc complex divide algorithm: For e+fi = (a+bi)/(c+di):

if(fabs(c) <fabs(d) {
 ratio = c/d;
 t = (c*ratio + d);
 e = ((a*ratio) + b) / t;
 f = ((b*ratio) – a) / t;
} else {
 ratio = d/c;
 t = (c + d*ratio);
 e = ((b*ratio) + a);
 f = (b – (a*ratio)) /t;
}

 (plus cleanup code to handle infinities and NaN)

libm/libgcc math BoF
Complex Divide Accuracy

Errors/10 million test values

Greater than: 8 ulp 12 ulp 16 ulp 48 ulp

A: Current complex div 1.77% 1.70% 1.63% 1.18%

B: Test “ratio” underflow 0.0425% 0.0346% 0.0279% 0.0172%

C: Scale inputs as needed 0.00011% 0.00001% 0.00001% 0.0%

A - current cdiv, 1.6% answers are seriously wrong.
B - gains almost 2 orders of magnitude improvement
C - gains another 3 orders of magnitude

Ulp = units last place, 16 ulp means at least 16 low
bits of either real or imag portion are wrong.

libm/libgcc math BoF
Complex Divide Perf Cost

Scaled to current = 1.00 x86 x86 arm64 arm64

Larger values mean slower small full small full

A: Current complex div 1.00 1.00 1.00 1.00

B: Test “ratio” underflow 0.99 1.21 1.05 1.44

C: Scale inputs as needed 1.10 1.36 1.32 1.75

Small case limits exponents to 1/2 full range; Full case tests full range.
Perf cost varies with architecture. Related to branch prediction effectiveness.
(B) has mininal cost for 100 times fewer wrong answers
(C) modest cost for 100,000 times fewer wrong answers.
* Marketing benchmarkers resist any perf reductions.
Use -fcx-limited-range if current behavior desired

libm/libgcc math BoF
exp() example

Recent change to exp() [glibc 2.28] by Siddensh
Poyarekar - large perf improvement, small loss accuracy

When true value was near 0.5 least bit of precision, old
method used SW multi-precision to determine final bit
rounding. New method removes calls to multi-precision.

Only those cases affected. Maximum error is 0.55 ulp.
Performance gain is 10,000x.

Change supported by libc-alpha. Reported at Cauldron
2019 that some academics were shocked at the change.

libm/libgcc math BoF

What criteria or considerations should developers and
reviewers use when evaluating accuracy vs performance
tradeoffs?

We are somewhere between academic “precision over
all else” and marketing “performance over all else”.

Perhaps best precision bounded by ‘reasonable’
performance?

libm/libgcc math BoF

Possible considerations:

Predictability of performance (exp example)?

Rarity of wrong answers?

Size of errors? (1 or 2 ulp vs >20 ulp)

Input from audience?

libm/libgcc math BoF
Other math lib Topics

Libm has seen many improvements in recent years

Are there areas known to still need work?
Accuracy improvement? Performance improvement?

Are there people working on issues?

Other issues?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

