
TCB Safety

Elana Copperman, PhD – Mobileye / Intel
Rafi Davidovich – Intel

Linux Plumbers’ Conference 2020

Kernel Dependability and Assurance Micro-conference

Agenda

• TCB and safety, use case for generalized application

Focus on software handling of memory errors

• Classification of TCB data

• Define some (not necessarily all) failure modes

• Define some protection mechanisms

• Next steps …

TCB – Thread Control Block

• Data structure in the Linux kernel which contains thread-
specific information needed to manage threads.

• Manipulated by the kernel constantly, while the thread is
being executed and while it is switched out of execution.

• Assuring the integrity of the TCB is critical to achieve safe
thread life cycle management in Linux.

TCB – Data Classification
Fields Safety

critical
Examples

Scheduling
information

Yes counter
nice
*mm, *active_mm
cpus_runnable, cpus_allowed
sleep_time

Task state Yes state
flags
addr_limit
exit_code, exit_signal
Pointers to parent and siblings
rt_priority

Process credentials No groups array
kernel capabilities: cap_effective, cap_inheritable, cap_permitted
pointer to user_struct

General No Limits
File system info, open files information
CPU specific sate of this task
Thread group tracking

Signal handlers Yes pointer to signal_struct
blocked sigset
sigpending struct

Possible Failure modes

FM Description Effect

Bit flip Corruption of TCB due to memory
bit flip

Effect may vary, per corrupted field:
• Crash of the thread (e.g.

mm_struct corruption)
• Wrong scheduling of the task

(e.g. modification of scheduling
priorities)

• Wrong calculation of output (e.g.
corruption of memory address
space attributes)

• Thread unable to respond to
signal (e.g. signal set corruption)

Wild pointer Corruption of TCB due to
generation of erroneous write
address by the kernel. TCB data
may be corrupted or modified.

Failure to update
TCB

Failure to update a field (e.g. due to
race condition)

Effect may vary, per required
update. If failure is graceful, kernel
will take the appropriate flow. If not,
un-defined behavior may occur.

Mitigation strategies

• SW based mechanisms

• Detection:
• Detect faults after they happen
• Take appropriate action, based on policy

• Prevention:
• Prevent the fault from happening

Possible Mitigations - Prevention

Mechanism Description

Kernel
configurations

Deploy existing kernel configurations to protect TCB:
• For example: CONFIG_HARDENED_USERCOPY or disable

CONFIG_DEVKMEM
Define a customized configuration for protection of TCB data

memprotect(), on
TCB pages

Use memprotect() to guard pages where TCB is stored

Make some data
items R/O after init

Identify non-updateable fields (or, enforce some fields to be non-
updateable) and make them read only

Grant write access
only via hypervisor

Allow write only via hypervisor interface. Will block “wild pointer”
failure mode

Possible Mitigations - Detection

Mechanism Description

CRC CRC/Checksum on safety critical data

Call For Action

• Complete TCB data classification
• Identify existing kernel configurations which can be used
• Define new mechanisms for prevention / detection
• Generalize safety mechanisms for protection of safety critical

data, apply to additional use cases.

