
 
Pre Release

 1 / 17

Safety in process CPU execution 
state

Ben Dooks
Codethink Ltd

Dr Jens Petersohn
Elektrobit Automotive GmbH



V1, 24-Aug-2020 2 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

About Ben

● Ben is senior engineer and long time Linux kernel contributor at 
Codethink.

● Codethink is an ethical, independent, and versatile software 
services company, expert in the use of Open Source 
technologies for systems software engineering.

– More info at https://www.codethink.co.uk/



V1, 24-Aug-2020 3 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

About Jens

● Jens Petersohn has been active in a variety of industries, the last 12 years in the 
automotive industry. He has been at Elektrobit for two years and prior to that at 
Continental AG for 10 years. In the past Jens has been employed at Silicon 
Graphics, Inc. in their Cray Supercomputer Division and has helped port Linux to 
the Intel IA-64 processor family.

● At Elektrobit Jens is responsible for ADAS and HAD products and has supported the 
development of EB corbos Linux for automotive applications for the last year.

● Elektrobit (EB) is an award-winning and visionary global supplier of embedded and 
connected software products and services for the automotive industry.

● A leader in automotive software with over 30 years serving the industry, EB’s 
software powers over one billion devices in more than 100 million vehicles and 
offers flexible, innovative solutions for car infrastructure software, connectivity & 
security, automated driving and related tools, and user experience.

● EB is a wholly owned subsidiary of Continental AG.



V1, 24-Aug-2020 4 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

Introduction

● What are we protecting and why
● The system

– Linux with IEC61508 SIL-2 mixed criticality
● The code flow
● Possible faults and mitigations
● A review of our mitigation



V1, 24-Aug-2020 5 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

The CPU state

● Concentrating on per-core state
● Directly accessible registers

– Integer
– Floating point
– Accelerators (MMX, SSE, AVX, etc)

● Indirect

– Core control registers (debug, interrupt, etc)



V1, 24-Aug-2020 6 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

X86 64-bit core registers

https://en.wikipedia.org/wiki/X86#/media/File:Table_of_x86_Registers_svg.svg



V1, 24-Aug-2020 7 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

How the code flows

● CPU executes instructions
● Intentional diversions

– System calls
● External events

– Interrupts
– Exceptions (sync or async)
– Signals (software events)
– Architecture specific events



V1, 24-Aug-2020 8 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

Faults and errors

● Not a complete list
● Mitigations
● Avoidance
● Useful Linux Kernel features



V1, 24-Aug-2020 9 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

Hardware faults

Failure Mitigations

Multiple or No entry Verify actions post call
Sequence numbers

Partial entry KPTI
SMAP, SMEP
Memory permissions
watchdog



V1, 24-Aug-2020 10 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

 Software faults

● Data corruption

– Whole other topic
● Incorrect task switching

– Kernel saves essential state on entry
– Only swaps everything on re-schedule

● Bad kernel code

– Non-integer use requires notification to kernel



V1, 24-Aug-2020 11 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

Mitigation strategies

● Task isolation

– Kernel threads still run
– Interrupts and other events cannot be blocked
– TL;DR – you can reduce but not stop

● Kernel checking

– Kernel sanitisers
– Rewrite in safe language



V1, 24-Aug-2020 12 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

Codethink mitigation

● Kernel code to detect errors

– Using shadow state
– ~2000 lines of C

● Wraps syscall and other entry points

– Save state on entry
– Compare on exit

● Detection not correction



V1, 24-Aug-2020 13 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

Our mitigation issues

● Significant overhead to kernel access

– 170% slower for integer
– 460% slower for fp/mmx/sse
– Tested with getpid() call

● Does not cover 100% of the kernel code

– The entry_64.s not covered
● Upstream acceptability



V1, 24-Aug-2020 14 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

Testing issues

● Time

– Kernel oops requires reboot
– Number of test combinations

● Virtual vs Real

– qemu issues with things like segment registers
– And sometimes it just crashes with little explanation

● How to induce actual CPU hardware/microcode faults?



V1, 24-Aug-2020 15 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

Conclusions

● Mitigations can impact performance
● Difficult/impossible covering 100% of core failures
● Testing can be time consuming
● Going forward:

– More user-space mitigations?
– Partial task isolation?

● Any other suggestions



V1, 24-Aug-2020 16 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

Presentation copyright

● Creative Commons Attribution 4.0 International License

– https://creativecommons.org/licenses/by/4.0/
●

https://creativecommons.org/licenses/by/4.0/


V1, 24-Aug-2020 17 / 17© Elektrobit Automotive GmbH / Codethink Ltd. CC-BY 4.0

Elektrobit Automotive GmbH
Am Wolfsmantel 46
D-91058 Erlangen / Germany

www.elektrobit.com

Codethink Ltd
3rd Floor Dale House
35 Dale Street
Manchester, M1 2HF, UK

www.codethink.co.uk


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

