
Understanding Linux Lists

Nic Volanschi and Julia Lawall (Inria)
August 25, 2020

Paper to appear at ASE 2020 1



Lists

A fundamental data structure to make a collection of objects.

Concepts:

• List elements: the data values contained in the list
• List element connector: how to get from one element to the next
• List head: how to find the start of the list

Challenges for typing:

• Different lists contain different types of elements.
– Work queues contain work, run queues contain tasks, etc

• Want one list type and operations for the thousands of list element types.

2



Linux lists

Lists in code:

struct list_head {
struct list_head *next, *prev;

};

Lists in pictures:

next
prev

next
prev

next
prev

3



Linux lists

Lists in code:

struct list_head {
struct list_head *next, *prev;

};

Lists in pictures:

next
prev

next
prev

next
prev

4



Lists in code

struct hiddev {
int minor;
...
struct list_head list;
spinlock_t list_lock;
...

};

struct hiddev_list {
struct hiddev_usage_ref buffer[HIDDEV_BUFFER_SIZE];
...
struct list_head node;
...

}

5



Lists in pictures

next
prev

hiddev

list
next
prev

hiddev_list

node
next
prev

hiddev_list

node

List elements retrieved using list_entry(), i.e., container_of().

6



Lists in pictures

next
prev

hiddev

list
next
prev

hiddev_list

node
next
prev

hiddev_list

node

List elements retrieved using list_entry(), i.e., container_of().
6



Assessment

+ One API for all kinds of lists.
void list_add(struct list_head *new, struct list_head *head);
void list_add_tail(struct list_head *new, struct list_head *head);

list_entry(ptr, type, member)

list_for_each(pos, head) ...
list_for_each_entry(pos, head, member) ...

+ Embedded list connectors improve locality.

+ List operations provide some concurrency guarantees.

7



List usage over time

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

0

2,000

4,000

ca
lls

list_add_tail
list_add

8



Problems

list_heads everywhere!

- What is their role?
– List head?
– List element connector?

- What are the involved types?
– For a list head, what is the type of the elements?
– For a list element, from what types of heads is it reachable?

9



Example

struct hiddev {
int minor;
...
struct list_head list;
spinlock_t list_lock;
...

};

struct hiddev_list {
struct hiddev_usage_ref buffer[HIDDEV_BUFFER_SIZE];
...
struct list_head node;
...

};

No comments, and the structures are defined in different files.

Only 35-40% of list_head fields have comments, depending on the version.

Some useful: “head of waiting srb list”
Some obscure or irrelevant: “submitted to pdma fifo”

10



Example

struct hiddev {
int minor;
...
struct list_head list;
spinlock_t list_lock;
...

};

struct hiddev_list {
struct hiddev_usage_ref buffer[HIDDEV_BUFFER_SIZE];
...
struct list_head node;
...

};

No comments, and the structures are defined in different files.

Only 35-40% of list_head fields have comments, depending on the version.

Some useful: “head of waiting srb list”
Some obscure or irrelevant: “submitted to pdma fifo”

11



Example

struct hiddev {
int minor;
...
struct list_head list;
spinlock_t list_lock;
...

};

struct hiddev_list {
struct hiddev_usage_ref buffer[HIDDEV_BUFFER_SIZE];
...
struct list_head node;
...

}

No comments, and the structures are defined in different files.

Only 35-40% of list_head fields have comments, depending on the version.

• Some useful: “head of waiting srb list”
• Some obscure or irrelevant: “submitted to pdma fifo”

12



Observation

List operators give type information:

struct hiddev *hiddev = hid->hiddev;
struct hiddev_list *list;
...
list_for_each_entry(list, &hiddev->list, node) {

...
}

list head

list element connector

13



Observation

List operators give type information:

struct hiddev *hiddev = hid->hiddev;
struct hiddev_list *list;
...
list_for_each_entry(list, &hiddev->list, node) {

...
}

list head

list element connector

14



Observation

List operators give type information:

struct hiddev *hiddev = hid->hiddev;
struct hiddev_list *list;
...
list_for_each_entry(list, &hiddev->list, node) {

...
}

list head

list element connector

15



Observation, continued

List operators give type information:

list_add_tail(&list->node, &hiddev->list);

list headlist element connector

Assessment:

The role and type information is available in the source code.
But scattered in different files and functions, and requires C type information.

16



Observation, continued

List operators give type information:

list_add_tail(&list->node, &hiddev->list);

list headlist element connector

Assessment:

The role and type information is available in the source code.
But scattered in different files and functions, and requires C type information.

17



Observation, continued

List operators give type information:

list_add_tail(&list->node, &hiddev->list);

list headlist element connector

Assessment:

• The role and type information is available in the source code.
• But scattered in different files and functions, and requires C type information.

18



Approach

• Scan the code base to collect information about list operator arguments.
• Make inferences from this information.

Type language:

l1 : l2, i.e., head : element
where l ::= s.f | v
for structure name s, field name f, and variable v

Example: hiddev.list : hiddev_list.node

19



Approach

• Scan the code base to collect information about list operator arguments.
• Make inferences from this information.

Type language:

l1 : l2, i.e., head : element
where l ::= s.f | v
for structure name s, field name f, and variable v

Example: hiddev.list : hiddev_list.node

19



Approach

• Scan the code base to collect information about list operator arguments.
• Make inferences from this information.

Type language:

l1 : l2, i.e., head : element
where l ::= s.f | v
for structure name s, field name f, and variable v

Example: hiddev.list : hiddev_list.node

19



Results

• Over 10,000 list_heads detected in Linux v5.6.
• Some are not used with standard operators, so no type is inferred (7.2%).
• A few hundred list_heads per version appear to be unused (2.9%).

Experiment Typed Head Element Head &
(total) only only element

v4.19 8601 4797 (55.8%) 3600 (41.9%) 204 (2.4%)
v5.6 9125 5078 (55.6%) 3823 (41.9%) 224 (2.5%)

20



Results

• Over 10,000 list_heads detected in Linux v5.6.
• Some are not used with standard operators, so no type is inferred (7.2%).
• A few hundred list_heads per version appear to be unused (2.9%).

Experiment Typed Head Element Head &
(total) only only element

v4.19 8601 4797 (55.8%) 3600 (41.9%) 204 (2.4%)
v5.6 9125 5078 (55.6%) 3823 (41.9%) 224 (2.5%)

20



Visualization tool

• Graphical representation of the inferred types based on GraphViz.
• Boxes for structures, circles for fields.
• Blue circles for list heads, black circles for list element connectors.

hiddev_list@hiddev.chiddev

nodelist

21



Visualization tool

• Graphical representation of the inferred types based on GraphViz.
• Boxes for structures, circles for fields.
• Blue circles for list heads, black circles for list element connectors.

hiddev_list@hiddev.chiddev

nodelist

21



Visualization tool: task_struct

rcu_node

signal_struct

cgroup

cgroup_subsys_state

cgroup_pidlist@cgroup-v1.c

perf_buffer

cgrp_cset_link

css_task_iter

var@buffer_sync.c

intel_uncore_box

perf_event

rapl_pmu@rapl.c

futex_pi_state@futex.c

task_struct

css_set

cgroup_mgctx

cgroup_taskset

var@buffer_sync.c

k_itimer

pmu_event_list

perf_event_context

gp_tasks exp_tasks

rcu_node_entry

blkd_tasks

thread_head posix_timers

thread_node

list

rstat_css_list pidlists

rstat_css_node

e_csets

links

cset_links

e_cset_node

cset_link

sibling children

event_list

rb_entry

cgrp_link

iters_node

dead_tasks

tasks

active_list

active_entry
owner_entry

sb_list active_list event_entry sibling_list child_list

active_list

list

thread_group ptrace_entry ptraced pi_state_list perf_event_list sibling children cg_list

threaded_csets_node threaded_csets tasks task_iters mg_tasks dying_tasks cgrp_links mg_node mg_preload_node

preloaded_src_csets preloaded_dst_csets

src_csets dst_csets csets

dying_tasks

list

pinned_active flexible_active event_list 22



list_heads that are both heads and element connectors

Experiment Hd & elm Self- Mutual Other
(total) lists pairs cases

v4.19 204 164 (80.4%) 11 (10.8%) 18 (8.8%)
v5.6 224 179 (79.9%) 13 (11.6%) 19 (8.5%)

23



Some interesting examples

var@buffer_sync.c

futex_pi_state@futex.c

task_struct

var@buffer_sync.c

dead_tasks

tasks

list

thread_group ptrace_entry

ptracedpi_state_list perf_event_list

sibling

childrenrcu_node_entry...

dying_tasks

• List elements that are also list heads.
• Self loops.
• etc.

24



Some interesting examples

var@buffer_sync.c

futex_pi_state@futex.c

task_struct

var@buffer_sync.c

dead_tasks

tasks

list

thread_group ptrace_entry

ptracedpi_state_list perf_event_list

sibling

childrenrcu_node_entry...

dying_tasks

• List elements that are also list heads.
• Self loops.
• etc.

25



Umbrellas

thread_group

thread_group thread_group thread_group

task_struct

26



Umbrellas

group_leader

group_leader group_leader group_leaderthread_group

thread_group thread_group thread_group

task_struct

27



Umbrellas

group_leader

group_leader group_leader group_leaderthread_group

thread_group thread_group thread_group

task_struct

28



Some interesting examples

var@buffer_sync.c

futex_pi_state@futex.c

task_struct

var@buffer_sync.c

dead_tasks

tasks

list

thread_group ptrace_entry

ptracedpi_state_list perf_event_list

sibling

childrenrcu_node_entry...

dying_tasks

• List elements that are also list heads.
• Self loops.
• etc.

29



Some interesting examples

var@buffer_sync.c

futex_pi_state@futex.c

task_struct

var@buffer_sync.c

dead_tasks

tasks

list

thread_group ptrace_entry

ptracedpi_state_list perf_event_list

sibling

childrenrcu_node_entry...

dying_tasks

• List elements that are also list heads.
• Self loops.
• etc.

30



Trees

ptrace_entry ptrace_entryptraced

task_struct

31



Trees

ptrace_entry

ptrace_entry ptrace_entryptraced

ptraced ptraced

task_struct

32



Trees

ptrace_entry

ptrace_entry

ptrace_entry ptrace_entry

ptrace_entryptraced

ptraced

ptraced ptraced

ptraced

task_struct

33



An umbrella tree!

var@buffer_sync.c

futex_pi_state@futex.c

task_struct

var@buffer_sync.c

dead_tasks

tasks

list

thread_group ptrace_entry

ptracedpi_state_list perf_event_list

sibling

childrenrcu_node_entry...

dying_tasks

• Simplings are sometimes accessed from the parent via children, and
sometimes from the head of the list of siblings via sibling.

• sibling uses group_leader to find the head of the list of siblings.

34



Rings

• Some self-loops really are loops, with no distinguished leader.
• Iteration becomes complex, because list iteration operators assume a head.
• Solution: add a head temporarily.

list_add_tail(&head, &piocbq->list);
list_for_each_entry(iocbq, &head, list) {

icmd = &iocbq->iocb;
if (icmd->ulpBdeCount == 0)

lpfc_ct_unsol_buffer(phba, iocbq, NULL, 0);
...

}
list_del(&head);

35



Rings

• Some self-loops really are loops, with no distinguished leader.
• Iteration becomes complex, because list iteration operators assume a head.
• Solution: add a head temporarily.

var@lpfc_bsg_ct_unsol_event

var@lpfc_ct_unsol_event

lpfc_iocbq head

list

head

clist

36



Bugs!

dp83640_private@dp83640.c

rxts@dp83640.c

dp83640_clock@dp83640.c var@dp83640.c

rxts rxpool

list

list

phylist list phyter_clocks

• 6 new bugs found.
• Could have detected at least 8 out of 11 previous
list_add/list_add_tail argument swap bugs.

37



Phyter bug in more detail

list_for_each(this, &phyter_clocks) {
tmp = list_entry(this, struct dp83640_clock, list);
if (tmp->bus == bus) {

clock = tmp;
break;

}
}

list_for_each_safe(this, next, &phyter_clocks) {
...

}

list_add_tail(&phyter_clocks, &clock->list);

38



Phyter bug in more detail

list_for_each(this, &phyter_clocks) {
tmp = list_entry(this, struct dp83640_clock, list);
if (tmp->bus == bus) {

clock = tmp;
break;

}
}

list_for_each_safe(this, next, &phyter_clocks) {
...

}

list_add_tail(&phyter_clocks, &clock->list);

39



Conclusion

• Simple type system for lists, distinguishing heads and elements.
• Tool for visualizing list types.
• Tool for collecting list uses.

• Are there other patterns besides umbrellas, trees, and rings?
• Are there other C types that need higher-level descriptions?
• Could these types be enforced, e.g. to avoid list_add argument swap bugs?
• If not enforced, should they be systematically documented?

https://gitlab.inria.fr/lawall/liliput

40



Conclusion

• Simple type system for lists, distinguishing heads and elements.
• Tool for visualizing list types.
• Tool for collecting list uses.

• Are there other patterns besides umbrellas, trees, and rings?
• Are there other C types that need higher-level descriptions?
• Could these types be enforced, e.g. to avoid list_add argument swap bugs?
• If not enforced, should they be systematically documented?

https://gitlab.inria.fr/lawall/liliput

40


