Understanding Linux Lists

Nic Volanschi and Julia Lawall (Inria)
August 25, 2020

Paper to appear at ASE 2020

1

A fundamental data structure to make a collection of objects.
Concepts:

- List elements: the data values contained in the list
- List element connector: how to get from one element to the next
- List head: how to find the start of the list

Challenges for typing:

- Different lists contain different types of elements.
- Work queues contain work, run queues contain tasks, etc

- Want one list type and operations for the thousands of list element types.

Lists in code:

struct list_head {
struct list_head *next, *prev;

b8

Lists in code:

struct list_head {
struct list_head *next, *prev;

b8

Lists in pictures:

struct hiddev { struct hiddev_list {
int minor; struct hiddev_usage_ref buffer[HIDDEV_BUFFER_SIZE];
struct list_head list; struct list_head node;

spinlock_t list_lock;

};...

Lists in pictures

hiddev iidey list hiddev._list
node node
next_|

> >
«lpreil, [

Lists in pictures

hiddev iidey list hiddev._list
node node
next_|

> >
«lpreil, [

List elements retrieved using list_entry(), ie, container_of().

Assessment

+ One API for all kinds of lists.

void list_add(struct list_head *new, struct list_head xhead);
void list_add_tail(struct list_head *new, struct list_head xhead);

list_entry(ptr, type, member)

list_for_each(pos, head) ...
list_for_each_entry(pos, head, member) ...

+ Embedded list connectors improve locality.

+ List operations provide some concurrency guarantees.

Q
£
=
—
()
>
(@)
Q
on
(4]
(2}
>
s}
oL
-

— list_add_tail

list_add

4,000 || —

0coc
610¢
8L0¢
L10¢

9L0¢
§Loc
710¢
€L0¢
41014
LLoc

0Loc
600¢
800¢
£00¢
900¢
G00¢
%700¢
€00¢
¢00¢
L00¢
000¢
666l
8661

list_heads everywhere!

- What is their role?

— List head?
- List element connector?

- What are the involved types?

- For a list head, what is the type of the elements?
— For a list element, from what types of heads is it reachable?

struct hiddev { struct hiddev_list {
int minor; struct hiddev_usage_ref buffer[HIDDEV_BUFFER_SIZE];
struct list_head list; struct list_head node;

spinlock_t list_lock; e
. Jhe
i

10

struct hiddev { struct hiddev_list {
int minor; struct hiddev_usage_ref buffer[HIDDEV_BUFFER_SIZE];
struct list_head list; struct list_head node;

spinlock_t list_lock; e
. Jhe
i

No comments, and the structures are defined in different files.

1

struct hiddev { struct hiddev_list {
int minor; struct hiddev_usage_ref buffer[HIDDEV_BUFFER_SIZE];
struct list_head list; struct list_head node;

spinlock_t list_lock;
};...
No comments, and the structures are defined in different files.
Only 35-40% of 1ist_head fields have comments, depending on the version.

- Some useful: “head of waiting srb list”

- Some obscure or irrelevant: “submitted to pdma fifo”

12

List operators give type information:

struct hiddev *hiddev = hid->hiddev;
struct hiddev_1list =*list;

list_for_each_entry(list, &hiddev->list, node) {

}

13

List operators give type information:

struct hiddev shiddev = hid->hiddev; list head

struct hiddev_1list =*list;
§hiddev->1ist,) node) {

list_for_each_entry(list,

}

List operators give type information:

struct hiddev shiddev = hid->hiddev; list head

struct hiddev_1list =*list;
list_for_each_entry Shiddev->1list, @ {

list element connector

15

Observation, continued

List operators give type information:

list_add_tail(&list->node, &hiddev->list);

Observation, continued

List operators give type information:

list_add_tail Ghiddev->list);

list element connector list head

Observation, continued

List operators give type information:

list_add_tail Ghiddev->list);

list element connector list head
Assessment:

- The role and type information is available in the source code.

- But scattered in different files and functions, and requires C type information.

Approach

- Scan the code base to collect information about list operator arguments.

+ Make inferences from this information.

Approach

- Scan the code base to collect information about list operator arguments.

+ Make inferences from this information.

Type language:

l1: 15, i.e., head : element
where [== s.f|v

for structure name s, field name f, and variable v

Approach

- Scan the code base to collect information about list operator arguments.

+ Make inferences from this information.

Type language:

l1: 15, i.e., head : element
where [== s.f|v

for structure name s, field name f, and variable v

Example: hiddev.list : hiddev_list.node

- Over 10,000 list_heads detected in Linux v5.6.
- Some are not used with standard operators, so no type is inferred (7.2%).

- Afew hundred 1ist_heads per version appear to be unused (2.9%).

20

- Over 10,000 list_heads detected in Linux v5.6.
- Some are not used with standard operators, so no type is inferred (7.2%).

- Afew hundred 1ist_heads per version appear to be unused (2.9%).

Experiment | Typed Head Element Head &
(total) only only element
v4.19 8601 | 4797 (55.8%) | 3600 (41.9%) | 204 (2.4%)
v5.6 9125 | 5078 (55.6%) | 3823 (41.9%) | 224 (2.5%)

20

Visualization tool

- Graphical representation of the inferred types based on GraphViz.
- Boxes for structures, circles for fields.

- Blue circles for list heads, black circles for list element connectors.

21

Visualization tool

- Graphical representation of the inferred types based on GraphViz.
- Boxes for structures, circles for fields.

- Blue circles for list heads, black circles for list element connectors.

hiddev hiddev list@hiddev.c

21

Visualization tool: task_struct

Experiment | Hd & elm Self- Mutual Other
(total) lists pairs cases
v4.19 204 164 (80.4%) | 11 (10.8%) | 18 (8.8%)
v5.6 224 179 (79.9%) | 13 (11.6%) | 19 (8.5%)

list_heads that are both heads and element connectors

23

Some interesting examples

var@buffer sync.c | | var@buffer sync.c

dead_tasks
|
task struct

futex_pi_state@futex.c i
©

- List elements that are also list heads.

- Self loops.
- etc.

24

Some interesting examples

var@buffer sync.c | | var@buffer sync.c

dead_tasks
|
task struct
threadigroup ® ptrace_entry

futex_pi_state@futex.c i
©

- List elements that are also list heads.

- Self loops.
- etc.

25

Umbrellas

task_struct

thread_group

\
thread_group | thread_group —p{ thread_group

\

26

Umbrellas

task_struct

group_leader

thread_group group_leader group_leader group_leader

\
thread_group | thread_group —p{ thread_group

\

27

Umbrellas

task_struct

s TS 1

thread_group group_leader group_leader group_leader

~

\
thread_group | thread_group —p{ thread_group

\

28

Some interesting examples

var@buffer sync.c | | var@buffer sync.c

dying_tasks
|
task struct
threadigroup ® ptrace_entry

futex_pi_state@futex.c i
©

- List elements that are also list heads.

- Self loops.
- etc.

29

Some interesting examples

var@buffer sync.c | | var@buffer sync.c

dead_tasks
|
task struct
threadigroup ® ptrace_entry

futex_pi_state@futex.c i
©

- List elements that are also list heads.

- Self loops.
- etc.

30

task_struct

ptraced —

P

ptrace_entry

P

ptrace_entry

31

Trees

task_struct

ptrace_entry

ptraced —{—p ptrace_entry p ptrace_entry

ptraced ptraced

32

Trees

task_struct

ptrace_entry

ptraced —

P

ptrace_entry

ptraced —

>

ptrace_entry

ptraced - -

P

ptrace_entry

ptraced - -

ptrace_entry

ptraced - -

33

An umbrella tree!

var@buffer sync.c | | var@buffer sync.c

task struct

threadfgroup ® ptrace_entry

futex_pi_state@futex.c l

list

- Simplings are sometimes accessed from the parent via children, and
sometimes from the head of the list of siblings via sibling.

- sibling uses group_leader to find the head of the list of siblings.

34

- Some self-loops really are loops, with no distinguished leader.

- Iteration becomes complex, because list iteration operators assume a head.
- Solution: add a head temporarily.

list_add_tail(&head, &piocbhg->list);
list_for_each_entry(iocbq, &head, list) {
icmd = &§iocbg->iocb;
if (icmd->ulpBdeCount == 0)
1pfc_ct_unsol_buffer(phba, iocbqg, NULL, 0);

}
list_del(Shead);

35

- Some self-loops really are loops, with no distinguished leader.
- Iteration becomes complex, because list iteration operators assume a head.

- Solution: add a head temporarily.

var@lpfc bsg ct unsol event

Ipfc_iocbq

@ G5

%

var@lpfc ct unsol event

[/

i

36

rxts@dp83640.c

dp8364 1vatef 4$83640.c

dp83640 cleck@dp83640.c var@dp83640.c
@ list phyter clocks

- 6 new bugs found.

- Could have detected at least 8 out of 11 previous
list_add/list_add_tail argument swap bugs.

37

Phyter bug in more detail

list_for_each(this, &phyter_clocks) {
tmp = list_entry(this, struct dp83640_clock, list);
if (tmp->bus == bus) {
clock = tmp;
break;

}
list_for_each_safe(this, next, &phyter_clocks) {

}

list_add_tail(&phyter_clocks, &clock->list);

38

Phyter bug in more detail

list_for_each(this, &phyter_clocks) {
tmp = list_entry(this, struct dp83640_clock, list);
if (tmp->bus == bus) {
clock = tmp;
break;

}
list_for_each_safe(this, next, &phyter_clocks) {

}

list_add_tail(&phyter_clocks, &clock->list);

39

Conclusion

- Simple type system for lists, distinguishing heads and elements.
- Tool for visualizing list types.

- Tool for collecting list uses.

40

Conclusion

- Simple type system for lists, distinguishing heads and elements.
- Tool for visualizing list types.
- Tool for collecting list uses.

- Are there other patterns besides umbrellas, trees, and rings?
- Are there other C types that need higher-level descriptions?
- Could these types be enforced, e.g. to avoid list_add argument swap bugs?

- If not enforced, should they be systematically documented?

https://gitlab.inria.fr/lawall/liliput

40

