
@ShuahKhan

skhan@linuxfoundation.og

Linux Kernel dependability - Proactive &
reactive thinking

Shuah Khan
Linux Kernel Fellow
The Linux Foundation

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

We would like our

Systems
● Available
● Deterministic
● Reliable
● Responsive
● Resilient to remote and

local attacks
● Safe & Secure

Data on these systems
● Easily accessible
● Easily shareable with trusted

entities
● Safe from corruption
● Secure from unwanted intrusions

Bottom line, when we pick up our phones
we want to be able to make calls, read
news, take pictures, record video/audio
and keep all of that data safe. In short –
Dependable.

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

Obstacles

● Overflows
– Heap
– Integer overflows
– Stack overflows

● Privileged information leak
– kernel addresses in messages &

API - sysfs etc.

● Insufficient error and boundary
checking

● Out of bounds access

We are worried about being vulnerable
to intentional and unintentional, remote
and local user actions.

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

Obstacles

● Memory leaks
● Use-after-frees
● Uninitialized variable use
● Unsafe data from userspace

– Input arguments – e.g ioctls,
system calls etc.

– In network & usb etc. packets

We don’t want kernel panics leading to
out of service systems & unauthorized
access leading to data leaks and losses.

Obstacles stand in the way of having
highly available and dependable
infrastructure & systems.

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

Reactive thinking

● Find and fix regressions
– Fuzzers
– Regression tests

● Use dynamic and static analysis tools
● Scan and identify vulnerabilities
● Harden kernel code paths

Focus is on finding and fixing problems
in the released code.

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

Proactive thinking

● Invest time in defensive designs
● Understand common design & coding mistakes
● Focus on detection, mitigation, testing before code release
● Use Static analysis

– coccicheck, Sparse, Smatch etc.
– Found gaps in tools – enhance/write new

● Use Dynamic analysis & Regression testing
– Syzkaller, Trinity fuzzer, scripts: e.g leaking_memory.pl
– No existing test? Write one to go with your patch.
– Use error injection tests

Focus is on finding and fixing problems
before releasing the code.

mailto:skhan@linuxfoundation.og
https://www.kernel.org/doc/html/latest/dev-tools/coccinelle.html
https://www.kernel.org/doc/html/latest/dev-tools/sparse.html
http://smatch.sourceforge.net/
https://syzkaller.appspot.com/upstream
https://github.com/kernelslacker/trinity
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/leaking_addresses.pl

@ShuahKhan

skhan@linuxfoundation.og

Proactive designs

● Avoid leaking kernel addresses in kernel messages
● Avoid exposing kernel addresses in user API
● Error check input arguments from user-space
● Boundary (range) check input arguments from user-space
● Sanitize input arguments from user-space before use
● Pay attention to error and cleanup paths
● Avoid repeating mistakes with the use of common helpers

– When a helper doesn’t exist write one

● Kernel wide scope – is this a common problem across subsystems?

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

Be mindful of error and
cleanup paths

● Init and run-time paths can be easier to verify
● Error and cleanup paths are prone to

– Memory leaks due to not releasing resources
– Unbalanced lock acquire/release leading to potential deadlocks

● Enable debug config options to verify prove locks, locking.
– e.g: CONFIG_DEBUG_SPINLOCK, CONFIG_PROVE_LOCKING

● Enable debug options to check for use-after frees and memory
leaks
– CONFIG_KASAN, CONFIG_KCSAN, CONFIG_KMSAN,

CONFIG_UBSAN

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

Connect the dots for
effective testing

● Adding kcov hooks for collect coverage &
facilitate coverage-guided fuzzing with
syzkaller.
– Reference: Linux 5.8

kcov: collect coverage from usb soft interrupts
work by Andrey Konovalov – extends kcov to allow
collecting coverage from soft interrupts and then
uses the new functionality to collect coverage from
USB code.

mailto:skhan@linuxfoundation.og
https://lwn.net/Articles/816065/

@ShuahKhan

skhan@linuxfoundation.og

Regression test

● Regression test - Kernel Selftests
and other tests for regression

● Run fuzz tests - syzbot reproducers
– Linux Arts (Linux Auto-generated Reg

ressions Tests) Repo

● Scan for vulnerabilities

mailto:skhan@linuxfoundation.og
https://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest.git/
https://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-arts.git/
https://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-arts.git/

@ShuahKhan

skhan@linuxfoundation.og

Concurrency

● Race Condition Enabling Link Following:
Race condition between file/dir status check
and access. Related to TOCTOU and DAC
– Detection – KCSAN (?)
– Mitigation

● Time-of-check Time-of-use (TOCTOU) Race
Condition (seccomp)

● Discretionary Access Controls (YAMA)

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

Concurrency

● Signal handler race conditions
– Detection – KCSAN (?)
– Mitigation

● CONFIG_SIGNALFD: Allow receiving
signals on file descriptor

● pidfd_send_signal(): enables signaling a process
through a pidfd to eliminate the PID wrap resulting
in sending signals to a wrong process.

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

Memory Buffer Errors

● Buffer Copy without Checking Size of Input ('Classic
Buffer Overflow')

● Write-what-where Condition
● Access of Memory Location After End of Buffer
● Buffer Access with Incorrect Length Value

– Detection – coccinelle, sparse, smatch, gcc W=1
– Mitigation – replace unbounded copy functions with safer

API - e.g scnprintf() instead of snprintf()/strncpy()

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

Memory Buffer Errors

● Buffer Underwrite ('Buffer Underflow')
● Access of Memory Location Before Start of Buffer
● Incorrect Calculation of Buffer Size

– sparse, smatch

● Out-of-bounds Read/Write
– Detection: Static checkers, Dynamic syzkaller tests

with CONFIG_KASAN

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

Resource Locking
Problems

● Improper Resource Locking
● Missing Lock Check
● Double-Checked Locking
● Multiple Locks of a Critical Resource
● Multiple Unlocks of a Critical Resource
● Unlock of a Resource that is not Locked
● Deadlock

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

Resource Locking
Problems

● Coccinelle: missing unlocks, double locks,
find improper lock API usages) e.g: holding
locks in paths that require no lock holds.

● Kernel Lock Torture Test Operation
locktorture test

● Locking API boot-time self-tests
● Syzkaller

mailto:skhan@linuxfoundation.og

@ShuahKhan

skhan@linuxfoundation.og

References

● CWE CATEGORY: Concurrency Issues

● CWE CATEGORY: Memory Buffer Errors

● CATEGORY: Resource Locking Problems

mailto:skhan@linuxfoundation.og
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/1218.html
https://cwe.mitre.org/data/definitions/411.html

@ShuahKhan

skhan@linuxfoundation.og

Bringing it all together

● Promoting & incorporating proactive thinking
● Identify detection/mitigation

– Static analysis (static checkers + compilers)
– Dynamic analysis (test tools + config + features)

● Extend and write new detection tools as needed
● Harden framework/code for identified gaps

– e.g work: pidfd_send_signal(), seccomp(), %n, scnprintf() use etc.

● Others

mailto:skhan@linuxfoundation.og

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

