Sane-airscan: the future of Linux driverless scanning

LPC 2020 OpenPrinting Micro-Conference
Fri, August 28m 2020

e Open Printing Alexander Pevzner pzz@apevzner.com
@ making printing just work Make UNIX great again

mailto:pzz@apevzner.com

Few words about myself

Name: Alexander Pevzner

E-mail: pzz@apevzner.com

Known in Open Source world as author of sane-airscan and ipp-usb

Linux user since 1.2.13 kernel times.

30+ years in software industry, focusing mostly in systems software, network

protocols, software, that works with hardware. o
B Open Printing
@ making printing just work

mailto:pzz@apevzner.com
https://github.com/alexpevzner/sane-airscan
https://github.com/OpenPrinting/ipp-usb

What is driverless scanning

Driver still needed

But it speaks vendor-neutral protocol

Can work with compatible devices from many vendors

Can be compared with USB flash, SATA Hard Drive, IPP printer

User plugs the device and it just works, regardless of brand, manufactured and model

B Open Printing
@ making printing just work

Current state of the art

e In the ideal world, there should be only one common protocol for any particular class of hardware
e In reality, two protocols already exist and widely used:

* ESCL (Apple AirPrint scanning) from HP and Apple

* WSD (Web Services for Devices) from Microsoft and W3C
e Two more are coming:

* IPP-scan from PWG (Printer Working Group)

* TWAIN Direct from TWAIN Group

B Open Printing
@ making printing just work

Codification of scanner as programmable object

The important value of having these standards: full codification of scanner device as a programmable object
Although standards a different, the software model of scanner is very similar

Before that, there were no clear understanding, what software interfaces are supported by scanner

In result, SANE treats options as something that can be show to user as a human-readable text. TWAIN
allows driver to implement its own GUI dialog. And there is no reliable way for non-interactive program to
guess, for example, does device support ADF or not

Hope, SANE standard will be eventually updated with this new understanding in mind

In the next slides | will tell a little bit about each of these protocols

B Open Printing
@ making printing just work

eSCL

Promoted by Apple, part of Apple AirPrint standard

Unlike printing part of AirPrint standard, specification is not published, but reverse engineered
Relies on DNS-SD for device discovery

Simple XML-based protocol

Supported by every Apple device, which is good motivation for hardware vendors to support it

B Open Printing
@ making printing just work

WSD (WS-Scan)

Promoted by Microsoft, natively supported by Windows

Specification is publicly available

Also published as W3C standard, and this is slightly different dialect (uses different XML namespaces)
Printers seems to support both dialects, but Windows driver uses Microsoft version

XML-based

Relies on its own discovery mechanism (WS-Discovery, based on XML multicasting over UDP)

Very overcomplicated, specification hard to read, examples contradict with written specs

Extensively uses XML namespaces

In general, hardware implementations are more buggy that for eSCL

B Open Printing
@ making printing just work

Created by PWG (Printing Working Group)

Fully documented

Designed as extension of IPP printing protocol for scanning
Relies on DNS-SD for device discovery

Uses IPP binary representation for communications with devices

Currently not implemented neither in hardware nor in software

IPP-scan

Open Printing

making printing just work

TWAIN Direct

Created by TWAIN working group

Based on Google Cloud Print (_privet._tcp), like IPP-scan based on IPP-print

Documentation is publicly available

Can be used for both local and remote (cloud) scanning

Relies on DNS-SD for device discovery

Uses JSON messages for communication with device

Exists in a form of software simulator for Windows, freely available from TWAIN, but closed source

May arrive on hardware within 1-2 years

B Open Printing
@ making printing just work

Driverless scanning (and printing) over USB

On previous slides | was speaking about network protocols (all HTTP-based)
But what about USB-only devices?

They also are not lost

There is IPP-over-USB protocol, which is essentially HTTP over USB

IPP printing, eSCL scanning and even device web console works well over USB

WSD doesn’t work

Open Printing

making printing just work

sane-airscan: the implementation

Implements the standard SANE backend, works with any SANE frontend (simple-scan, xsane, etc)
Supports eSCL and WSD

If device supports both protocols, chooses protocol automatically

Relies on Avahi for DNS-SD and implements own search engine for WS-Discovery (WSD)

Extensible. New HTTP-based protocols can be easily added

B Open Printing
@ making printing just work

sane-airscan: few words about architecture

e Consist of the following major components:
* Discovery engine
* Protocol-independent state machine
* Protocol handlers for each supported protocol
* Logger, which is very important for troubleshooting without physical access to device

* Supporting infrastructure (HTTP client, memory management etc)

B Open Printing
@ making printing just work

Discovery

Proper implementation of discovery is not so trivial

One physical device may be found multiple times (IP4/IP6, WiFi/Ethernet, eSCL/WSD)

* Merges found device instances by UUID

DNS-SD network names are user-friendly, WSD are not (WSD uses UUID as device name)

* Name taken from DNS-SD world, if possible

DNS-SD is fast (reads from Avahi cache), WSD is not (with multicast discovery there is a trade-off between
speed and reliability)

* Uses hints from DNS-SD world: if device announces IPP printer with scanner support (_ipp._tcp with
scan=t in the TXT record) or _scanner. tcp service, it makes sense to continue discovery until compatible

scanner is found

B Open Printing
@ making printing just work

Protocol-independent state machine

Fortunately, all supported protocols have quite similar workflow:

* Obtain device capabilities (paper size, resolutions, color modes etc)
* Send scan request

* Download image

* Decode image (or multiple images, if scanning from ADF)

* Tell device to cleanup after scan

* Error reporting and recovery

It allows to make a clear split between protocol-independent state machine and protocol handlers, that
perform actual work. Protocol handlers are simple (~1000 C lines each), all complexity is in the common
layer

B Open Printing
@ making printing just work

Protocol handlers

e Responsible for creation and decoding HTTP requests

e Decide next step to perform, allowing some flexibility in workflow (say, eSCL requires in a case of error to
explicitly request an error reason, while WSD brings it instantly)

B Open Printing
@ making printing just work

Logger

Good logger is “must have” for this project, because in most cases | have to debug by e-mail
Standard SANE approach (logging to console) implies certain limitation on a level of detailing
Logging to console still used, but not very detailed

If enabled, very detailed log (protocol trace) created in the separate log file

Binary data (downloaded images) goes into separate .tar file (.tar writer is very easy to implement)

In most cases, it’s enough to ask user to enable protocol trace and to send resulting files

B Open Printing
@ making printing just work

Supporting infrastructure

e HTTP client, image decoders, convenience wrappers for memory allocation — all goes here

e Overall driver size is relatively large, more that 20K lines

B Open Printing
@ making printing just work

The future directions

e In the following few slides | will tell about our future plans

B Open Printing
@ making printing just work

The present SANE architecture

e The present state. Please note, everything runs within a single process:

e e D

B Open Printing
E making printing just work

The Future

e Where we go. Please note, a daemon process added to the picture:

v

discovery

B Open Printing
@ making printing just work

What it gives us

Faster client startup: no need to wait for drivers initialization

No more “access denied” problems for USB devices, as server has enough privileges
Ability to change SANE API without need to break hundreds of existing drivers

* sane-airscan will perform a required translation

Hardware driver together with IPP-scan server can be packed as a snap. The similar approach will be used
in the printing infrastructure

B Open Printing
@ making printing just work

Why IPP-scan

Unlike eSCL, fully documented

Unlike WSD, documentation is clear
Backed by respectable organization, PWG
Based on established standard, IPP

Hope, eventually will be supported by hardware, like IPP-print

B Open Printing
@ making printing just work

Thank You

Thank You !!

GitHub: https://github.com/alexpevzner/sane-airscan

Email: pzz@apevzner.com

B Open Printing
@ making printing just work

https://github.com/alexpevzner/sane-airscan
mailto:pzz@apevzner.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

