
Sane-airscan: the future of Linux driverless scanning

LPC 2020 OpenPrinting Micro-Conference 
Fri, August 28m 2020

 
Alexander Pevzner pzz@apevzner.com

 
Make UNIX great again 

mailto:pzz@apevzner.com


Name: Alexander Pevzner

E-mail: pzz@apevzner.com

Known in Open Source world as author of sane-airscan and ipp-usb

Linux user since 1.2.13 kernel times.

30+ years in software industry, focusing mostly in systems software, network 
protocols, software, that works with hardware.

Few words about myself

mailto:pzz@apevzner.com
https://github.com/alexpevzner/sane-airscan
https://github.com/OpenPrinting/ipp-usb


● Driver still needed

● But it speaks vendor-neutral protocol

● Can work with compatible devices from many vendors

● Can be compared with USB flash, SATA Hard Drive, IPP printer

● User plugs the device and it just works, regardless of brand, manufactured and model

What is driverless scanning



● In the ideal world, there should be only one common protocol for any particular class of hardware

● In reality, two protocols already exist and widely used:

 ESCL (Apple AirPrint scanning) from HP and Apple

 WSD (Web Services for Devices) from Microsoft and W3C

● Two more are coming:

 IPP-scan from PWG (Printer Working Group)

 TWAIN Direct from TWAIN Group

Current state of the art



● The important value of having these standards: full codification of scanner device as a programmable object

● Although standards a different, the software model of scanner is very similar

● Before that, there were no clear understanding, what software interfaces are supported by scanner

● In result, SANE treats options as something that can be show to user as a human-readable text. TWAIN 
allows driver to implement its own GUI dialog. And there is no reliable way for non-interactive program to 
guess, for example, does device support ADF or not

● Hope, SANE standard will be eventually updated with this new understanding in mind

● In the next slides I will tell a little bit about each of these protocols

Codification of scanner as programmable object



● Promoted by Apple, part of Apple AirPrint standard

● Unlike printing part of AirPrint standard, specification is not published, but reverse engineered

● Relies on DNS-SD for device discovery

● Simple XML-based protocol

● Supported by every Apple device, which is good motivation for hardware vendors to support it

eSCL



● Promoted by Microsoft, natively supported by Windows

● Specification is publicly available

● Also published as W3C standard, and this is slightly different dialect (uses different XML namespaces)

● Printers seems to support both dialects, but Windows driver uses Microsoft version

● XML-based

● Relies on its own discovery mechanism (WS-Discovery, based on XML multicasting over UDP)

● Very overcomplicated, specification hard to read, examples contradict with written specs

● Extensively uses XML namespaces

● In general, hardware implementations are more buggy that for eSCL

WSD (WS-Scan)



● Created by PWG (Printing Working Group)

● Fully documented

● Designed as extension of IPP printing protocol for scanning

● Relies on DNS-SD for device discovery

● Uses IPP binary representation for communications with devices

● Currently not implemented neither in hardware nor in software

IPP-scan



● Created by TWAIN working group

● Based on Google Cloud Print (_privet._tcp), like IPP-scan based on IPP-print

● Documentation is publicly available

● Can be used for both local and remote (cloud) scanning

● Relies on DNS-SD for device discovery

● Uses JSON messages for communication with device

● Exists in a form of software simulator for Windows, freely available from TWAIN, but closed source

● May arrive on hardware within 1-2 years

S

TWAIN Direct



● On previous slides I was speaking about network protocols (all HTTP-based)

● But what about USB-only devices?

● They also are not lost

● There is IPP-over-USB protocol, which is essentially HTTP over USB

● IPP printing, eSCL scanning and even device web console works well over USB

● WSD doesn’t work

Driverless scanning (and printing) over USB



● Implements the standard SANE backend, works with any SANE frontend (simple-scan, xsane, etc)

● Supports eSCL and WSD

● If device supports both protocols, chooses protocol automatically

● Relies on Avahi for DNS-SD and implements own search engine for WS-Discovery (WSD)

● Extensible. New HTTP-based protocols can be easily added

sane-airscan: the implementation



● Consist of the following major components:

 Discovery engine

 Protocol-independent state machine

 Protocol handlers for each supported protocol

 Logger, which is very important for troubleshooting without physical access to device

 Supporting infrastructure (HTTP client, memory management etc)

sane-airscan: few words about architecture



● Proper implementation of discovery is not so trivial

● One physical device may be found multiple times (IP4/IP6, WiFi/Ethernet, eSCL/WSD)

 Merges found device instances by UUID

● DNS-SD network names are user-friendly, WSD are not (WSD uses UUID as device name)

 Name taken from DNS-SD world, if possible

● DNS-SD is fast (reads from Avahi cache), WSD is not (with multicast discovery there is a trade-off between 
speed and reliability)

 Uses hints from DNS-SD world: if device announces IPP printer with scanner support (_ipp._tcp with 
scan=t in the TXT record) or _scanner._tcp service, it makes sense to continue discovery until compatible 
scanner is found

Discovery



● Fortunately, all supported protocols have quite similar workflow:

 Obtain device capabilities (paper size, resolutions, color modes etc)

 Send scan request

 Download image

 Decode image (or multiple images, if scanning from ADF)

 Tell device to cleanup after scan

 Error reporting and recovery

● It allows to make a clear split between protocol-independent state machine and protocol handlers, that 
perform actual work. Protocol handlers are simple (~1000 C lines each), all complexity is in the common 
layer

Protocol-independent state machine



● Responsible for creation and decoding HTTP requests

● Decide next step to perform, allowing some flexibility in workflow (say, eSCL requires in a case of error to 
explicitly request an error reason, while WSD brings it instantly)

Protocol handlers



● Good logger is “must have” for this project, because in most cases I have to debug by e-mail

● Standard SANE approach (logging to console) implies certain limitation on a level of detailing

● Logging to console still used, but not very detailed

● If enabled, very detailed log (protocol trace) created in the separate log file 

● Binary data (downloaded images) goes into separate .tar file (.tar writer is very easy to implement)

● In most cases, it’s enough to ask user to enable protocol trace and to send resulting files

Logger



● HTTP client, image decoders, convenience wrappers for memory allocation – all goes here

● Overall driver size is relatively large, more that 20K lines

Supporting infrastructure



● In the following few slides I will tell about our future plans

The future directions



● The present state. Please note, everything runs within a single process:

The present SANE architecture

Client App
(frontend)

libsane-dll.so
(a simple dispatcher)

libsane-XXX.so
(device driver)

libsane-YYY.so



● Where we go. Please note, a daemon process added to the picture:

The Future

Client App
IPP-scan

client library

IPP-scan
server

Avahi daemon

libsane-XXX.so
(device driver)

di
sc

ov
er

y



● Faster client startup: no need to wait for drivers initialization

● No more “access denied” problems for USB devices, as server has enough privileges

● Ability to change SANE API without need to break hundreds of existing drivers

 sane-airscan will perform a required translation

● Hardware driver together with IPP-scan server can be packed as a snap. The similar approach will be used 
in the printing infrastructure

What it gives us



● Unlike eSCL, fully documented

● Unlike WSD, documentation is clear

● Backed by respectable organization, PWG

● Based on established standard, IPP

● Hope, eventually will be supported by hardware, like IPP-print

Why IPP-scan



Thank You !! 

GitHub: https://github.com/alexpevzner/sane-airscan            

Email: pzz@apevzner.com

                                                                                    
                                 

Thank You

https://github.com/alexpevzner/sane-airscan
mailto:pzz@apevzner.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

