
Sane-airscan: the future of Linux driverless scanning

LPC 2020 OpenPrinting Micro-Conference
Fri, August 28m 2020

Alexander Pevzner pzz@apevzner.com

Make UNIX great again

mailto:pzz@apevzner.com

Name: Alexander Pevzner

E-mail: pzz@apevzner.com

Known in Open Source world as author of sane-airscan and ipp-usb

Linux user since 1.2.13 kernel times.

30+ years in software industry, focusing mostly in systems software, network
protocols, software, that works with hardware.

Few words about myself

mailto:pzz@apevzner.com
https://github.com/alexpevzner/sane-airscan
https://github.com/OpenPrinting/ipp-usb

● Driver still needed

● But it speaks vendor-neutral protocol

● Can work with compatible devices from many vendors

● Can be compared with USB flash, SATA Hard Drive, IPP printer

● User plugs the device and it just works, regardless of brand, manufactured and model

What is driverless scanning

● In the ideal world, there should be only one common protocol for any particular class of hardware

● In reality, two protocols already exist and widely used:

 ESCL (Apple AirPrint scanning) from HP and Apple

 WSD (Web Services for Devices) from Microsoft and W3C

● Two more are coming:

 IPP-scan from PWG (Printer Working Group)

 TWAIN Direct from TWAIN Group

Current state of the art

● The important value of having these standards: full codification of scanner device as a programmable object

● Although standards a different, the software model of scanner is very similar

● Before that, there were no clear understanding, what software interfaces are supported by scanner

● In result, SANE treats options as something that can be show to user as a human-readable text. TWAIN
allows driver to implement its own GUI dialog. And there is no reliable way for non-interactive program to
guess, for example, does device support ADF or not

● Hope, SANE standard will be eventually updated with this new understanding in mind

● In the next slides I will tell a little bit about each of these protocols

Codification of scanner as programmable object

● Promoted by Apple, part of Apple AirPrint standard

● Unlike printing part of AirPrint standard, specification is not published, but reverse engineered

● Relies on DNS-SD for device discovery

● Simple XML-based protocol

● Supported by every Apple device, which is good motivation for hardware vendors to support it

eSCL

● Promoted by Microsoft, natively supported by Windows

● Specification is publicly available

● Also published as W3C standard, and this is slightly different dialect (uses different XML namespaces)

● Printers seems to support both dialects, but Windows driver uses Microsoft version

● XML-based

● Relies on its own discovery mechanism (WS-Discovery, based on XML multicasting over UDP)

● Very overcomplicated, specification hard to read, examples contradict with written specs

● Extensively uses XML namespaces

● In general, hardware implementations are more buggy that for eSCL

WSD (WS-Scan)

● Created by PWG (Printing Working Group)

● Fully documented

● Designed as extension of IPP printing protocol for scanning

● Relies on DNS-SD for device discovery

● Uses IPP binary representation for communications with devices

● Currently not implemented neither in hardware nor in software

IPP-scan

● Created by TWAIN working group

● Based on Google Cloud Print (_privet._tcp), like IPP-scan based on IPP-print

● Documentation is publicly available

● Can be used for both local and remote (cloud) scanning

● Relies on DNS-SD for device discovery

● Uses JSON messages for communication with device

● Exists in a form of software simulator for Windows, freely available from TWAIN, but closed source

● May arrive on hardware within 1-2 years

S

TWAIN Direct

● On previous slides I was speaking about network protocols (all HTTP-based)

● But what about USB-only devices?

● They also are not lost

● There is IPP-over-USB protocol, which is essentially HTTP over USB

● IPP printing, eSCL scanning and even device web console works well over USB

● WSD doesn’t work

Driverless scanning (and printing) over USB

● Implements the standard SANE backend, works with any SANE frontend (simple-scan, xsane, etc)

● Supports eSCL and WSD

● If device supports both protocols, chooses protocol automatically

● Relies on Avahi for DNS-SD and implements own search engine for WS-Discovery (WSD)

● Extensible. New HTTP-based protocols can be easily added

sane-airscan: the implementation

● Consist of the following major components:

 Discovery engine

 Protocol-independent state machine

 Protocol handlers for each supported protocol

 Logger, which is very important for troubleshooting without physical access to device

 Supporting infrastructure (HTTP client, memory management etc)

sane-airscan: few words about architecture

● Proper implementation of discovery is not so trivial

● One physical device may be found multiple times (IP4/IP6, WiFi/Ethernet, eSCL/WSD)

 Merges found device instances by UUID

● DNS-SD network names are user-friendly, WSD are not (WSD uses UUID as device name)

 Name taken from DNS-SD world, if possible

● DNS-SD is fast (reads from Avahi cache), WSD is not (with multicast discovery there is a trade-off between
speed and reliability)

 Uses hints from DNS-SD world: if device announces IPP printer with scanner support (_ipp._tcp with
scan=t in the TXT record) or _scanner._tcp service, it makes sense to continue discovery until compatible
scanner is found

Discovery

● Fortunately, all supported protocols have quite similar workflow:

 Obtain device capabilities (paper size, resolutions, color modes etc)

 Send scan request

 Download image

 Decode image (or multiple images, if scanning from ADF)

 Tell device to cleanup after scan

 Error reporting and recovery

● It allows to make a clear split between protocol-independent state machine and protocol handlers, that
perform actual work. Protocol handlers are simple (~1000 C lines each), all complexity is in the common
layer

Protocol-independent state machine

● Responsible for creation and decoding HTTP requests

● Decide next step to perform, allowing some flexibility in workflow (say, eSCL requires in a case of error to
explicitly request an error reason, while WSD brings it instantly)

Protocol handlers

● Good logger is “must have” for this project, because in most cases I have to debug by e-mail

● Standard SANE approach (logging to console) implies certain limitation on a level of detailing

● Logging to console still used, but not very detailed

● If enabled, very detailed log (protocol trace) created in the separate log file

● Binary data (downloaded images) goes into separate .tar file (.tar writer is very easy to implement)

● In most cases, it’s enough to ask user to enable protocol trace and to send resulting files

Logger

● HTTP client, image decoders, convenience wrappers for memory allocation – all goes here

● Overall driver size is relatively large, more that 20K lines

Supporting infrastructure

● In the following few slides I will tell about our future plans

The future directions

● The present state. Please note, everything runs within a single process:

The present SANE architecture

Client App
(frontend)

libsane-dll.so
(a simple dispatcher)

libsane-XXX.so
(device driver)

libsane-YYY.so

● Where we go. Please note, a daemon process added to the picture:

The Future

Client App
IPP-scan

client library

IPP-scan
server

Avahi daemon

libsane-XXX.so
(device driver)

di
sc

ov
er

y

● Faster client startup: no need to wait for drivers initialization

● No more “access denied” problems for USB devices, as server has enough privileges

● Ability to change SANE API without need to break hundreds of existing drivers

 sane-airscan will perform a required translation

● Hardware driver together with IPP-scan server can be packed as a snap. The similar approach will be used
in the printing infrastructure

What it gives us

● Unlike eSCL, fully documented

● Unlike WSD, documentation is clear

● Backed by respectable organization, PWG

● Based on established standard, IPP

● Hope, eventually will be supported by hardware, like IPP-print

Why IPP-scan

Thank You !!

GitHub: https://github.com/alexpevzner/sane-airscan

Email: pzz@apevzner.com

Thank You

https://github.com/alexpevzner/sane-airscan
mailto:pzz@apevzner.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

