
BPF Extensible Network
TCP Congestion Control, TCP Header option, sk local storage, and…?

Martin Lau
Software Engineer

1

8/28/2020

Once upon a time...

In 2015 LPC, Protocol Ossification was brought up

• How easy to test/deploy a new TCP CC idea

- How easy to make kernel changes? No kernel panic!

- How quick is the turnaround time (deploy, gather data, and re-iterate)?

‣ As quick as a kernel can be upgraded or kernel module can be deployed

‣ Some environment has long tail of kernel versions

• The answer to the above is usually discouraging to many network/protocol experts

One idea was,

• Can TCP Congestion Control be written in BPF?

2

Recent BPF works in networking

• TCP Congestion Control

• TCP Header Option

• SK local storage

3

BPF TCP CC
How to write one?

4

• Which one of them below is a bpf program?

BPF TCP CC
How to write one?

5

• Which one of them below is a bpf program?

BPF TCP CC
How to write one? (contd)

6

BPF TCP CC
How to write one? (contd)

7

BPF TCP CC
How to use it in production?

8

• Load the bpf prog

• Available in sysctls as any native kernel TCP CC

• Can be used as other native kernel TCP CC

BPF TCP CC
How to use it in existing program?

9

• setsockopt() works as-is also. For example:

setsockopt(fd, IPPROTO_TCP, TCP_CONGESTION, "bpf_cubic",
 strlen("bpf_cubic"));

BPF TCP CC
Status?

10

• Available since kernel 5.6
• bpf_cubic and bpf_dctcp are in tools/testing/selftests/bpf/progs/

BPF struct_ops
What BPF TCP CC is built upon

11

• A kernel “C” struct with a few function pointers

- kernel module, tcp_congestion_ops, Qdisc_ops, proto...etc.

• bpf_struct_ops

- An API to implement function pointers (of a kernel struct) in BPF

- Each function pointer is implemented in a bpf prog in BPF_PROG_TYPE_STRUCT_OPS

- struct_ops bpf program does not have a static running ctx

‣ BTF of kernel: Get the function signature. Only push the needed args to the stack

• Leveraged BTF aware verifier, Trampoline, and CO-RE.

BPF struct_ops
What BPF TCP CC is built upon

12

• libbpf

- Load all the BPF_PROG_TYPE_STRUCT_OPS programs

- Create the “struct tcp_congestion_ops” object

‣ function pointers pointing to the bpf prog fds

- Load this kernel object to the kernel

• Use bpftools instead!

- “bpftools struct_ops register bpf_cubic.o” does all the above

BPF TCP Header Option

• Allow BPF prog to write and parse TCP header option

- Write max delay ack in header and the receiver set a lower RTO

- NIC speed

- Preferred CC

- ...etc.

• The bpf prog can write any header option kind. The kernel will check for duplicated option.

- A lot of flexibility for datacenter internal traffic

- Potentially support the new standard option in an older kernel

• Commonly used during 3-way handshake

• Can also parse and write option in data, pure-ack, and FIN header

13

BPF TCP Header Option
Write SYNACK

static int write_synack_opt(struct bpf_sock_ops *skops)

{

/* (1) Look for a particular option kind == 0xDA (Delay Ack) */

syn_opt_in.kind = 0xDA;

err = bpf_load_hdr_opt(skops, &syn_opt_in, sizeof(syn_opt_in),

 BPF_LOAD_HDR_OPT_TCP_SYN);

 /* (2) Client does not support 0xDA option. Write nothing in SYNACK. */

if (err == -ENOMSG) return CG_OK;

/* (3) Ask client to resend the option later if server is in syncookie */

if (skops->args[0] == BPF_WRITE_HDR_TCP_SYNACK_COOKIE)

 synack_opt_out.data[0] |= OPTION_F_RESEND;

/* (4) Write the server max delay ack in synack */

synack_opt_out.data[1] = 10; /* 10ms max delay ack */

bpf_store_hdr_opt(skops, &synack_opt_out, sizeof(synack_opt_out), 0);

} 14

Kind Length Data

BPF TCP Header Option
Passive Side Established

static int handle_passive_estab(struct bpf_sock_ops *skops)

{

/* (1) Look for a particular option “0xDA” in SYN */

syn_opt_in.kind = 0xDA;

err = bpf_load_hdr_opt(skops, &syn_opt_in, sizeof(syn_opt_in),

 BPF_LOAD_HDR_OPT_TCP_SYN);

 /* (2) Client does not have 0xDA option */

if (err == -ENOMSG) return CG_OK;

/* (3) Use a lower RTO to match the delay ack of the client */

min_rto_us = syn_opt_in.data[1] * 1000;

bpf_setsockopt(skops, SOL_TCP, TCP_BPF_RTO_MIN, &min_rto_us,

sizeof(min_rto_us));

}

15

sk storage for BPF Program

16

• It is very common that a bpf program wants to associate some data to a specific sk

• For example, a new TCP CC may want to store a few more data points of a connection

• hashtab way:

- Define a bpf hashmap with the 4-tuple as the key and the data as the value.

‣ Expensive: cpu for the lookup.

‣ Maintenance nightmare: when to remove this key from the map?

• bpf_sk_storage way

- Store the data directly at the sk itself and the data will go away with the sk

- bpf_sk_storage_get(smap, sk, …)

- Benchmark shows >50% lookup time improvement

- Being re-purposed to other kernel objects (e.g. bpf_inode_storage)

sk storage for BPF Program
BPF_MAP_TYPE_SK_STORAGE

17

• Define BPF_MAP_TYPE_SK_STORAGE map.

- Key must be a socket fd

- Value is whatever to be stored in the sk

• For example, two SK_STORAGE map defined:

- map_rtt to store RTT data of a sk

- map_location to store location data of the remote side (East/West coast, APAC, EUR...etc)

sk storage for BPF Program
Access from BPF program

18

SK

map_rtt_idx

map_location_idx

...

sk storage for BPF Program
Access from BPF program

19

bpf_sk_storage_get(&map_rtt, sk, &rtt_10ms, BPF_SK_STORAGE_GET_F_CREATE);

SK rtt_10ms

map_rtt_idx

map_location_idx

...

sk storage for BPF Program
Access from BPF program

20

bpf_sk_storage_get(&map_rtt, sk, &rtt_10ms, BPF_SK_STORAGE_GET_F_CREATE);

bpf_sk_storage_get(&map_location, sk, &location_west, BPF_SK_STORAGE_GET_F_CREATE);

SK location_west rtt_10ms

map_rtt_idx

map_location_idx

...

sk storage for BPF Program
Access from BPF program

21

bpf_sk_storage_get(&map_rtt, sk, &rtt_10ms, BPF_SK_STORAGE_GET_F_CREATE);

bpf_sk_storage_get(&map_location, sk, &location_west, BPF_SK_STORAGE_GET_F_CREATE);

SK location_west rtt_10ms

map_rtt_idx

map_location_idx

...

location_west rtt_10ms ...

Access from userspace
sk storage for BPF Program

22

• Access BPF_MAP_TYPE_SK_STORAGE map through regular map API

‣ bpf_map_update_elem(map_location_fd, &sk_fd, &location_east, 0)

• It must hold a socket fd

• For a shared map, other processes may not have a hold on the fd

• Other maps have a similar situation (as a value), e.g. sockmap, reuseport_array...etc.

• An ID for each sk: there is already sk cookie

• A generic way to do sk cookie => fd?

What Next?
Q&A

23

• What else do you want to de-ossify in BPF?

