
Userspace OVS with HW Offload 
and AF_XDP

Linux Plumber 
Aug 24, 2020

William Tu, VMware

1



Agenda

Introduction
• OVS Kernel and userspace datapath
• DPDK and AF_XDP netdev interface
• tc-flower and rte_flow offload 

Design and Evaluation
• Userspace datapath with tc-flower offload and AF_XDP 
• Performance

2



What is OVS?

Fast Path

Slow Path

Datapath

ovs-vswitchd

3

SDN Controller

OpenFlow



OVS Linux Kernel Datapath

driver

Hardware

IP/routing

socket

Fast Path
in Kernel

Slow path
in userspace

OVS Kernel 
module

ovs-vswitchd

4

Device
RX Hook

1. Kernel module: openvswitch.ko
2. Works on a wide variety of distributions and 

versions
3. Well tested, widely used, but with kernel overhead



OVS Userspace Datapath

Userspace
Datapath

ovs-vswitchd

5

SDN Controller

Hardware
DPDK library

Both slow and fast 
path in userspace 1. Used by OVS-DPDK

2. Fast due to kernel by-pass
3. Deploy/Debug DPDK is hard
4. Usually for appliance with dedicated 

HW



Motivation

Customers deploy either one of the two:
• OVS Kernel Datapath:
• stable, feature-rich, and for typical hypervisor/enterprise

• OVS-DPDK Userspace Datapath
• high performance, used in appliance

However,
• Maintaining and running both datapaths is hard
• Can we have single datapath for both use cases?

6



XDP and AF_XDP

• XDP: eXpress Data path
• An eBPF hook point at the network device 

driver level

• AF_XDP:
• A new socket type that receives/sends raw 

frames with high speed
• Use XDP program to trigger receive
• Userspace program manages Rx/Tx ring and 

Fill/Completion ring. 
• Zero Copy from DMA buffer to user space 

memory, achieving line rate (14Mpps).

7

From “DPDK PMD for AF_XDP”



OVS AF_XDP netdev

ovs-vswitchd

Goal
• Available since OVS 2.12
• Use AF_XDP socket as a fast channel 

to usersapce OVS datapath
• Flow processing happens in userspace
• Same datapath as used by OVS-DPDK

8

Network Stacks

Hardware

User space

Driver + 
XDP

Userspace
DatapathAF_XDP

socket

Kernel



Performance

9

0
1
2
3
4
5
6
7
8
9

10

KD UD + phy-ovs-afxdp UD + phy-dpdk-ixgbe

Pa
ck

et
 R

at
e 

(Ｍ
pp

s)

1 flow 1K flows

• Different Datapaths:
• KD: Kernel Datapath
• UD: Userspace Datapath

• Different Packet I/O:
• Phy-ovs-afxdp: OVS’s AF XDP 

packcet I/O code on physical
port. 

• Phy-dpdk-ixgbe: DPDK’s 
ixgbe PMD on physical port 

Kernel

OVS-AF_XDP 

OVS-DPDK 

Physical-to-physical port, using 64B 1 flow and 1K flows, with different packet I/O



Summary

• Userspace datapath with AF_XDP netdev performs
• Much better than kernel datapath
• Slower than using DPDK netdev

• Future work
• More improvement on the OVS AF_XDP netdev
• Explore the idea of OVS HW offload:

OVS-DPDK -> rte_flow, OVS kernel datapath-> tc-flower

• Observation
• With AF_XDP netdev, userspace datapath can enable tc-flower offload.

10



HW offload: rte_flow v.s tc-flower APIs 

• OVS HW offload interface
• Translate the datapath flow 

into rte_flow or tc-flower
• ovs/lib/netdev-offload-

{dpdk, tc}.c

• Vendor driver
• Check whether the API is 

implemented in vendor-
specific driver

11

Hardware

RTE_FLOW

ovs-vswitchd

TC-FLOWER
Vendor driver

OVS interface

Controller

Userspace



Target Use Case: Tunnel and Conntrack

• Simple 5 tuple match and action no longer meets today’s firewall 
requirements, typical use cases:
• Each packet goes through three OVS datapath flows

• Example for incoming packets (rx):
1. Match and Tunnel decap (ex: Geneve or VxLAN), Recirc
2. Match on tunnel md and send to Connection tracking, Recirc
3. Match on CT states and forward/drop

Requirements: 
A. Need to do all of them in hardware, no partial offload.
B. if not A, process the flow in a fast SW path.

12



A. Kernel DP + tc-flower

Pros:
• Support tunnel and connection 

tracking
• Better integrate into Linux 

kernel
• Easier to ship and test

Cons:
• Fall-back performance in 

software OVS or TC (2Mpps)

13

Userspace

OVS kernel
Datapath

ovs-vswitchd

Controller

OpenFlow

TC flower offload

Kernel



B. DPDK rte_flow

Pros:
• Support tunnel encap
• Better SW fallback performance
• More active in community from 

different vendors

Cons:
• No connection tracking API 

support
• Need to deploy OVS-DPDK

14

userspace

OVS-DPDK
Userspace Datapath

ovs-vswitchd

Controller

OpenFlow

RTE_FLOW API

https://events19.linuxfoundation.org/events/dpdknorthamerica2019/program/schedule/



C. Userspace Datapath + tc-flower + AF_XDP

A flow could be processed
1. In HW with tc-flower, if not
2. In XDP, which is safe and 

performant, if not
3. In OVS userspace with AF_XDP

• Better integration into Linux kernel
• Better fallback performance in XDP/ 

userspace
• Each stage has its own limitations, 

need to probe its supported features
15

Userspace
Userspace Datapath 

+ AF_XDP

ovs-vswitchd

TC flower API

XDPKernel



C. Userspace Datapath + tc-flower + AF_XDP

Performance of P2P using 1 flow, 
64B UDP packet:
A. HW offload: 31Mpps
B. HW offload + VxLAN encap: 

21Mpps
C. XDP[1] : 3.5Mpps
D. Userspace DP + AF_XDP poll-

mode: 4.5Mpps (uses 2 cores)

16

Userspace
Userspace Datapath 

+ AF_XDP

ovs-vswitchd

XDP ProcessingKernel

[1] https://netdevconf.info/0x14/session.html?talk-fast-OVS-data-path-with-XDP



Summary of using Approach-C

For enterprise use case:
• Use userspace datapath with AF_XDP interrupt-mode netdev
• If need more performance, enable software XDP processing or 

AF_XDP polling-mode

For high performance use case:
• Use HW offload through tc-flower (fastest)
• Use software XDP processing (2nd)
• Use userspace datapath with AF_XDP polling-mode netdev

17



Future Work

• Validate tc-flower offload for conntrack and tunnel decap

• OVS XDP Processing patch
• [ovs-dev] [PATCH v4 0/5] XDP offload using flow API provider
• https://mail.openvswitch.org/pipermail/ovs-dev/2020-August/373915.html

• More optimization for OVS AF_XDP netdev
• OVS with AF_XDP - what to expect, OVS conference 2019

18



Thank you

19


