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Abstract - As UDP does not have flood
attack protections such as SYN cookies and
sockets often have a single receive queue which
can block in a flood scenario the whole applica-
tion, we developed a novel fair-share ratelim-
iter rakelimit in unprivileged BPF, designed
for a UDP reverse proxy, that is capable of
applying rate limits to specific traffic streams
while minimizing the impact on others. To
achieve this, we base our work on Hierarchi-
cal Heavy Hitters, which proposes a method
to group elements on attributes such as source
and destination IP address, and we are able
to substantially simplify the algorithm for our
rate-limiting use case to allow for an imple-
mentation in BPF. We further extend the
concept of a hierarchy from IPs addresses to
ports, providing us with precise rate limits
based on the 4-tuple. Our approach is capable
of rate-limiting floods originating from single
addresses, subnets but also reflection attacks,
and applies limits as specific as possible. To
verify the performance, we evaluated the ap-
proach against different simulated scenarios.
This project’s outcome is a single Go-library
that can be activated on any UDP socket and
provides flood protection out of the box.

1 Introduction
As Internet usage surges [1] dependencies on its avail-
ability increase since social interactions have been
moved to video calls, and a large number of people
move their workplace to a work-from-home setup. To

ensure availability at any given point in time, server
applications have to be protected from floods of pack-
ets rendering a service unusable. Several services on
the Internet rely on the UDP protocol, which pop-
ularity will likely surge in the future with the broad
adoption of QUIC and HTTP/3. While the TCP
protocol includes different mechanisms to provide a
basic level of protection against floods, such as syn-
cookies [2], but the Linux kernel also provides mech-
anisms such as conntrack as part of the netfilter sub-
system [3]. While these mitigations are available for
TCP, the connectionless protocol UDP does not have
such protections. This work proposes a new fair-share
rate-limiting algorithm based on Hierarchical Heavy
Hitters [4] which goal it is to detect common floods
scenarios including attackers from a single address, a
single subnet and a reflection attack originating from
a single source port. The algorithm should be sim-
ple enough to be implemented in a BPF socketfilter,
ensuring we can rely on the small overhead possible
with BPF without exposing a larger security surface.
We aim for a simple and easy to use library which
is capable to prevent floods out-of-the-box of various
types with a minimal configuration required.

2 Design

2.1 Estimating Counts
The main objective is to detect traffic streams, which
take a large fraction of the overall throughput. Once
a stream is identified that exceeds the limit, only a
subset of packets of that stream should be allowed to
pass to comply with the threshold. A rate is defined
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in packets per second (pps) This closely relates to the
problem of finding Heavy Hitters: determining items
that take a large fraction of a stream. To identify
those, simply keeping a rate per each 4-tuple is not
scalable as the number of combinations would exceed
memory limits. Instead, probabilistic algorithms
can be used, such as a SpaceSaving algorithm [5]
or a CountMin sketch [6], which aim to provide an
estimate of an element in an infinite stream with
constant memory requirements. As a CountMin
sketch does not require a lot of complex code and
stores small amounts of data due to the hashing
process, we decided to swap it in for the SpaceSaving
algorithm.

A CountMin sketch [6] is a probabilistic datastruc-
ture capable of providing an estimated count of an
arbitrary element with constant space requirements.
It can update a count by passing an element through
different hash functions h and increasing its respec-
tive items in the array of size w. When estimating
a count, the same procedure is repeated, but counts
are stored for each hash function, and the minimum
count is the estimate for the element. It expects two
parameters (e, δ) provide with the probability pcorrect

an estimate x̂

pcorrect ≥ 1− δ (1)

x̂ ≤ x+ ε‖x‖ (2)

These parameters determine the width w and the
height h of the internal two-dimensional array.

w = de/εe (3)

d = dln1/δe (4)

Rakelimit aims for an error of 1% with the proba-
bility 0.01, resulting in w = 273 and h = 5.

w = de/0.01e = 271.83 ≈ 272 (5)

h = dln1/0.01e = 4.61 ≈ 5 (6)

To avoid bias in the hashing process, the width is
aligned to a power of 2, for which we accept a small
increase in the error, thus w = 256. This results in
an error of approx. 0.011.

dεe = e/256 ≈ 0.011 (7)

These parameters may change in the future due to
further optimizations.

2.1.1 Estimating Rates

Instead of counts, rakelimit stores rates in the Count-
Min sketch. A rate r is defined as

r = 1
tnow − tprev

(8)

where t is a time in seconds.
Rate limiting based on the most recent rate is not

precise since it would only capture the rate between
two packets, thus only being based on a varying
timespan. Instead EWMA [7] is used. EWMA es-
sentially takes an old rate and a rate that was just
measured and combines these two to generate a more
accurate estimate. This results in rates being esti-
mated based on a time-based sliding window instead
of the timespan between the last two packets.

rcurrent = 1
durseconds

(9)

restimate = a× rcurrent + (1− a)× rold (10)

a determines the impact of the rate just measured
on the estimated rate. To determine this factor, the
timestamp of the previously measured rate is used
tprev.

The older the previous timestamp tprev, the smaller
the impact of the previous rate should be. Thus

a =
{

tnow−tprev

window if tnow − tprev ≤ window
0 otherwise

The parameter window determines how long an
element is considered relevant/accurate.
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rakelimit as of now uses a window of 1second which
has been chosen as a first naive parameter, and keeps
the same mechanism as previously described to store
these in a CountMin sketch. The window parame-
ter will be changed once more knowledge around its
impact is collected.

2.2 Finding Traffic Streams

The main contribution of this work is the grouping of
packets, thus finding traffic streams. The general idea
is to take a 4 tuple and generalise it in different ways
along the four dimensions. When this is done multi-
ple times extracting different parts, a rate limit can
be applied to each of these generalisations. For exam-
ple an address port combination 127.0.0.1:1234 can
be extracted into 127.0.0.*:1234, 127.0.0.1:*, and so
on.

An incoming packet would update the rates for all
of these generalisations, thus allowing to detect floods
from a single address, a whole subnet, and others.
This idea is based on Hierarchical Heavy Hitters (in
particular [8]), which is used to determine Heavy Hit-
ters in datastreams. It relies on the implicit hierarchy
by IP addresses, as shown in Figure 1.

We extend this structure to be applicable to ports,
which are either specified or since they are fully arbi-
trary a wildcard.

Due to our application of rate limiting we are able
to substantially simplify the algorithm proposed in
[8], as we aim for no Heavy Hitters at any point in
time, resulting in Algorithm 1

This algorithm takes an element and determines if
it exceeds any rate limit, and if so prints the rate. A
level is defined as the amount of generalisations that
has been applied to an element, as illustrated in the
following example:

Figure 1: A two-dimensional lattice for IP addresses,
from [4, p.7]

Level 0: 127.0.0.1:5432

Level 1: 127.0.0.1:*, 127.0.0.*:5421

Level 2: 127.0.0.*:*

While rakelimit considers not just the source
address and port but the 4 tuple, the logic is equiva-
lent, and we consider the following 12 combinations
with IPv4 packets:

Source Address /32, /24, /0
Source Port Specified, Wildcard

Destination Address /32
Destination Port Specified, Wildcard

An equivalent IPv6 setting is defined as

Source Address /64, /48, /0
Source Port Specified, Wildcard

Destination Address /128
Destination Port Specified, Wildcard
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Algorithm 1: Hierarchical Heavy Hitters for
Rate Limiting
φ: rate limit;
for level l = 0, l < L, l = l + 1 do

foreach item p at level l do
Let n be the lattice node that p
belongs to

// get last rate;
rateprev = GetEstimateCM(CM(n), p);
ratecurrent = CalculateRate(tnow,
tprev, rateprev);

if ratecurrent ≥ φ then
print(p, ratecurrent);
return // important, as packet has
to be dropped from this point on;

2.3 The Algorithm

The rate-limiting algorithm consists of two parts.
First, on each incoming element, different general-
isations are computed, and rates for the respective
elements are updated. If a rate exceeds the rate limit
in any of the updated generalisations, it gets dropped,
otherwise, it is allowed to pass.

While this seems obvious, there are some crucial
details to consider.

We want rate limits to be applied as specific as
possible, but as loose as necessary. That means that if
a flood originates from a fully specific four tuple, only
this tuple should be rate limited. No other packets
should be impacted. If the flood originates from a
whole /24 subnet, the whole subnet should be rate
limited. This means that a rate limited packet is
never counted against more general rate limits, only
against more specific ones.

A first idea to use this logic would be to do the rate
limiting in two steps. First, each element is passed
to the nodes and a rate is determined. If all rates
are below the rate limit, the packet is allowed to pass
and is updated in all of the nodes. Otherwise it will
be simply dropped. This works but has the drawback
that it does not converge to specific rate limits, it will
stay where the rate limit first happens.

Instead, we propose to combine checking and
adding elements. Generalisations of an element are
added to the respective CountMin sketch, and after
each level the maximum rate of that level is compared
to the rate limit. If the max rate is below the rate
limit, the next level will be checked. Otherwise, the
elements is considered to be part of a flood, and will
not be added to higher (more generic) levels.

Packets that are part of are either allowed to
pass immediately with a probability ppass, and gets
dropped otherwise.

ppass = rate limit
max rate (11)

The passing probability ensures that flood streams
get not fully blocked but can still pass within the
limit.

The whole algorithm is shown in Figure 9
A rate limit is capable of converging towards more

specific rate limits, but due to its structure also ef-
fectively isolates from other traffic. This ensures that
the impact on legitimate traffic is minimised. The
proposed algorithm is shown in Algorithm 2.

Algorithm 2: Hierarchical Heavy Hitters for
Rate Limiting
φ: rate limit;
max rate = 0;
for level l = 0, l < L, l = l + 1 do

foreach item p at level l do
Let n be the lattice node that p
belongs to

// get last rate;
rateprev = GetEstimateCM(CM(n), p);
ratecurrent = CalculateRate(tnow,
tprev, rateprev);

if ratecurrent > max rate then
max rate = ratecurrent;

if max rate > φ then
if randFloat() ≤ rate limit/max rate
then

return PASS;
return DROP;
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3 Implementation

In order to provide a low-overhead solution, the algo-
rithm is implemented in BPF (Berkeley Packet Fil-
ter). As the goal of this project is to provide a simple-
to-use Go library that can be activated on any socket,
it is implemented as a socketfilter to allow an impact
on other applications, as well as a minimal security
impact as it does not require root privileges. The
CountMin sketch is stored in a BPF map. rakelimit
uses fasthash [9], since it is fast, small and accepted
by the BPF verifier.

To implement a CountMin sketch in BPF a hash-
function has to be determined, and the counts have
to be persisted across packets. As we require multi-
ple CountMin sketches, which will be covered later,
a BPF array is used. The code we use is shown in
Snippet 3.

1 struct cm_value {
2 fpoint value ;
3 __u64 ts;
4 } __attribute__ (( packed ));
5

6 struct countmin {
7 struct cm_value values [ HASHFN_N ][ COLUMNS ];
8 } __attribute__ (( packed ));
9

CountMin sketch in BPF

In rakelimit, querying for counts to determine what
the current rates are and potentially adding a packet
happens for each packet, and due to the algorithm
can be merged together. The implementation which
stores both a rate and a timestamp is shown in Snip-
pet 3.

We pass various parameters such as the current
timestamp, used to calculate a rate, the CountMin
struct, and a struct holding the element we want to
query and update.

Then we iterate through all hash functions and
generate a hash using fasthash. The index determines
the position of the item in the respective array of the
hash function. This item holds both a previous rate
and a timestamp, which we both update and then
check if the newly determined rate is smaller than the
minimum, and if so, we update the minimum. After
all iterations we return the minimum rate found.

We use EWMA to calculate rates based in pack-
ets per second (pps), as this is a natural format to
represent rates in. To implement it a fixed-point rep-
resentation is required in order to represent the factor
a. To avoid further complexity, we ensured that no
signed fixed-points are used. The code to estimate a
new rate based on an old rate and a rate that was
just measured is shown in Snippet 3

The code converts the numbers a few times back
and forth between integers and fixed-points. This
is due to the fact that we want to avoid over- and
underflows as much as possible. While adding and
subtracting of two fixed-points works without any
issues as long as the result fits into the fixed-point
precision, it does not apply for multiplications and
divisions. When multiplying or dividing with two
fixed-points, the factor introduced by the fixed-point
representation has to be discounted (multiplication)
or accounted (division). This intuitively would result
in the following formula for multiplication:

resultmul = fpa ∗ fpb/(2 << 32) (12)

And in a similiar situation for division:

resultdiv = fpa/fpb ∗ (2 << 32) (13)

While this may work out for certain use-cases, the
intermediate results of the operations may over or un-
derflow the 64 bits available, even though the actual
result would fit into the 64-bit fixed-point represen-
tation.

To avoid such a scenario, we only use multipli-
cations and divisions with mixed representations,
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1 static __u64 FORCE_INLINE add_to_cm ( __u64 ts , struct countmin *cm ,
2 struct packet_element * element )
3 {
4 fpoint min = -1;
5

6 # pragma clang loop unroll (full)
7 for (int i = 0; i < HASHFN_N ; i++) {
8 __u32 target_idx = fasthash64 (element , sizeof ( struct packet_element ), i) & (COLUMNS -1);
9

10 struct cm_value * value = &cm -> values [i][ target_idx ];
11 value -> value = estimate_avg_rate (value ->value , ts - value ->ts);
12 value ->ts = ts;
13

14 if (value -> value < min) {
15 min = value -> value ;
16 }
17 }
18 return min;
19 }
20

Querying and adding to a CountMin sketch in BPF

1

2 __u64 rate_current = 1000000000 ull / dur;
3 // last timestamp > current timestamp + duration ? use new rate
4 if (dur >= WINDOW ) {
5 return to_fixed_point ( rate_current );
6 }
7

8 fpoint a = to_fixed_point (dur) / WINDOW ;
9

10 fpoint new_rate = old_rate ;
11 if ( old_rate > to_fixed_point ( rate_current )) {
12 new_rate -= a * to_int ( old_rate - to_fixed_point ( rate_current ));
13 } else {
14 new_rate += a * to_int ( to_fixed_point ( rate_current ) - old_rate );
15 }
16 return new_rate ;
17

Calculating rates in BPF
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meaning that one argument is a fixed point while the
other argument is an integer.

It is important to note that the result of such an
operation is again a fixed point, as the multiplication
of a fixed-point with the integer 5 does not require
any further discounting. This ensures no over- or un-
derflows happen in the intermediate results, and re-
solves the previously mentioned issue. It is important
to note that while it does not matter which factor is
in fixed-point representation, when dividing the divi-
sor has to be an integer and the dividend has to be
in fixed-point representation.

As we store rates in packets per second (pps) and
this component is aimed to mitigate floods and there-
fore large rates, there is no need to determine the rate
more precise than an integer. This allows us to con-
vert these parameters back and forth between types
without degrading the quality of it.

While the limitations of BPF have required a few
workarounds, such as missing bpf-to-bpf calls or the
missing context fields in the skb struct, the whole
algorithm could be implemented without any further
issues.

4 Results
To ensure the quality of the algorithm and the im-
plementation, different simulations have been run to
examine how well the rate limiter can limit floods
and isolate their impacts. In the following scenarios,
a flood stream and other traffic streams happening at
the same time will be examined.

4.1 Scenario 1: Single address & port

A flood is generated with 100 packets per second from
a single address and single port 127.0.0.1:80. An-
other stream falling in the same subnet 127.0.0.1:80
at the same time with 5 packets per second is gen-
erated to examine the impact on legitimate traffic.
The results are shown in Figure 2 and Figure 3, con-
firming that the flood gets successfully rate-limited
without impacting traffic, even if it falls within the
same subnet.
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Figure 2: A flood from a single address and a single
port. The rate limiter successfully limits it to 25
packets per second
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Figure 3: Legitimate traffic from the same subnet as
the flood. The rate limiter is capable of isolating the
flood completely, resulting in no impacts for other
traffic.
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Figure 4: A reflection attack from random addresses
using a single port.

4.2 Scenario 2: Reflection Attack
In this scenario, a reflection attack with 100 packets
per second is simulated, with traffic being send from
random IP addresses but a single port. To confirm
the impact on other parties, a traffic stream consist-
ing of packets with a fully random 4 tuple will be gen-
erated to ensure the rate limiter does not just limit
the overall throughput. The results are shown in Fig-
ure 4 and Figure 5.

This confirms that even if packets have to be aggre-
gated multiple times (fully specified address → /24
subnet → full wildcard /0) the rate limiter impacts
as little other traffic as possible.

4.3 Scenario 3: High throughput &
limit

To ensure the rate limiter is capable of dealing with
large floods, a third scenario simulates 5 seconds of
flood traffic at a rate of 1,000,000 packets per second,
with a rate limit of 250,000 packets per second. The
flood traffic is shown in Figure 6.

The rate limiter behaves exactly as previously, just
on a larger scale. The initial spike persists, but as pre-
viously noted, can be reduced by reducing the win-
dow size used.
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Figure 5: Legitimate from packets with a fully ran-
dom 4 tuple. As the rate limiter only limits a singke
soyrce port for a fully specified destination the ma-
jority of traffic is unimpacted.
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Figure 6: A large flood with a large rate limit, show-
ing the same behaviour as in smaller attacks. The
spike seems to persist longer, which is due to the
smaller duration (5 seconds instead of 60)
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Figure 7: A large flood with a small rate limit, high-
lighting that the spike is independent of the input
rate but proportional to the rate limit.

Time (second) Received Forwarded
0 5425698 361
1 10050250 41
2 10050182 34
3 10050446 39
4 10050261 23
5 4724513 13

Figure 8: Received and forwarded packets counts of
a large flood with a small rate limit

4.4 Scenario 4: High throughput
small limit

The last scenario uses the same flood as in Scenario
3, simulated for five seconds with 1,000,000 packets
per second, but uses a comparable small rate limit
25 packets per second. The flood traffic is shown in
Figure 7.

The scenario highlights that the initial spike is in-
dependent of the input rate but proportional to the
rate limit. As it is impossible to visually extract fur-
ther information, the raw data is listed in Table 8.

The forwarded packets initially exceed the rate
limit, but converge in the subsequent seconds towards

the set rate limit. This confirms that there are no sig-
nificant imprecisions that could impact the quality of
the rate limiter.

5 Conclusion
The results of rakelimit over are very satisfactory.
The algorithm is capable of detecting and isolating
traffic streams based on attributes of the 4 tuple.
The impact on other traffic streams is kept at a mini-
mum, ensuring floods do not degrade services. It has
been confirmed that a BPF socketfilter is capable
of handling such a complex scenario, ensuring that
a minimal security surface is exposed while gaining
the low overhead of the kernel space. Future work
includes evaluating the algorithm with first checking
in every node if it exceeds the rate limit, and only
if it doesn’t add the packet to all generalisations of
the level. This ensures that floods do not just get
rate limited more specific, but also more generic in
case different floods start at different times. The al-
gorithm is successfully implemented in BPF and will
be further optimised before it will be open-sourced in
September on Github under cloudflare/rakelimit.
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