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Abstract

This paper compares the performance of tail calls
between eBPF programs before and after the op-
timizations introduced to mitigate spectre flaws.
This was carried out for two kernel versions: 5.4
and 5.5. The latter introduces a performance
optimization which removes retpoline overhead
whenever possible.

Two experiments were carried out: the first one
uses in-kernel testing BPF_PROG_TEST_RUN and
the second uses kprobes and network namespaces.
The conditions to trigger the optimization from
kernel 5.5 were met in both cases, resulting in a
drop of the cost of one tail call from 20-30 ns to
less than 10 ns.

1 Introduction

Each new hardware generation brings improve-
ments: new architecture paradigms, new features,
more cache, more cores, etc. Software needs to
be updated to leverage those new capabilities in
order to introduce new features or improve per-
formance. But because software is more flexible
than hardware (i.e easier to update), it is some-
times used to fix hardware bugs. This was the
case for recent hardware bugs known as meltdown
and spectre.

Spectre is the name given to a serie of vulner-
abilities leveraging hardware bugs, present on
most CPU (Intel, AMD, ARM). After a 6 months
embargo -allowing major operating systems to
implement software mitigation-, it was publicly

discosed in early 2018 [7]. Back then, the perfor-
mance hit was estimated between 10-25%. The
first workaround was to disable speculative exe-
cution in the BIOS, waiting for micro-codes to
be published. A more general approach called
retpoline was detailed by Google[9]. This software
construct allows indirect branches to be isolated
from speculative execution. It’s named retpoline
because it’s similar to the “trampoline” technique,
but a ret instruction is used to unstack the target
from the stack. This mechanism was also applied
to eBPF tail-calls, introducing a performance re-
gression. Recently, an optimization was merged
into the Linux kernel (in v5.5) to avoid retpoline
when possible.

This paper presents the result the performance
gap between those two versions: 5.4 using retpo-
line for tail calls, and 5.5 converting tail calls to
direct calls when the verifier can ensure that a
given index is constant from all program paths.
Section 2 summarizes the speculative execution
issue and existing counter-measures. Section 3
presents the benchmarks, and Section 4 outlines
the results. In Section 5, we discuss those num-
bers and the expectations.

2 Context

In 2018, researchers from Google Project Zero
have released a serie of side-channels attacks
called meltdown and spectre[7, 5]. While melt-
down allows arbitrary memory-reads (actually
melting memory isolation provided by the hard-
ware), spectre applies timing attack to the branch-
prediction machinery of modern out-of-order exe-
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cuting processors called speculative execution. In
a nutshell, modern CPUs execute instructions be-
fore knowing if it will be required. Without this
mechanism, the processor would need to wait for
prior instructions to be resolved before executing
subsequent ones. The pre-computed results may
be discarded if the instructions were not needed
after all. In that “worst case scenario”, the pro-
cessor will execute the correct instruction path.
But usually, the predictions are correct so the
pre-computed state is commited, resulting in a
higher performance and hidden latency. While
speculative operations do not affect the archi-
tectural state of the processor, they can affect
the microarchitectural state, such as information
stored in TLBs and caches. Observing those
microarchitectural state can lead to information
leakage.

From a hardware perspective, the mitigation is
to disable speculative execution (via BIOS/EFI
settings, or micro-instructions loading).
The alternative involves software modifications;
both in the kernel and in user-space applications.
For instance, compilers had to be modified to
add memory serialization instruction (Intel ad-
vocates lfence) when required, and implement
the retpoline technique. JIT engine also had to
be modified. a493a87 introduced retpoline for
indirect eBPF calls. Instead of reading the target
location of the next program from a BPF “pro-
grams” map, a indirection layer was introduced
to have the new target stored on the stack, and
prevent speculative execution through the use
memory fence. While some of this workaround
can be considered negligible for general-purpose
tasks, the Linux kernel community in general
has since been obsessed with avoiding indirect
calls in fast-path code whenever possible. The
retpoline construction has a detrimental effect
on performance. Because this patch affected the
code generated by the eBPF VM, tail calls where
slowed down. However, in some cases, speculative
execution is not dangerous as it is not known to
be usable to exploit security vulnerabilities. As a
result, if those cases were treated differently, they
could recover part of the performance lost due to
the mitigation. One such a case is tail call known

statically at compile time to be fixed [3, 4]. For
instance, a given call will always read the address
of the program in the fist cell of the array of the
map. It does not matter whether the address in
this cell is fixed or not, as these variations will
be accounted for later.

In this particular but fairly common case, a patch
was proposed to replace the assembly code emit-
ted by the eBPF VM by a version without a
retpoline. The virtual machine takes the value
in the cell into account to execute different in-
struction on the CPU. If the cell is empty, a
nop instruction is emitted. This instruction does
nothing and thus has a very low cost. If however
there is a value in this cell of the map, then a
direct jump is written to this value. And these
instructions are updated every time the value of
the cell in the map changes. It is worth noting
that all the previously described mechanism relies
on the fact that the same cell of the map is used
for the tail call. This property is identified by
the verifier before loading the program. Similar
improvements in some access to maps were found
to result in 15 % increase in performance [6]. One
the aim of the internship would be to evaluate
if this improvement has a similar effect. The fol-
lowing section presents the benchmark we have
selected to identify the performance improvement
brought by kernel later than 5.5.

3 Performance case study

We focus on specific program used at Cloudflare:
L4Drop [2]. It is composed of various eBPF pro-
grams enforcing mitigation rules. There programs
are called ruleset and are linked by a tail call.
To evaluate time spent in eBPF programs, two
benchmarks were used.

3.1 Benchmarks

After outlining the desired measurements in the
specification, it becomes possible to create the
relevant benchmarks. It particular, running the
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measurements was automated as much as possi-
ble.

3.1.1 Benchmark 1

This first benchmark uses the benchmark-
ing facilities of the Linux kernel (Namely
BPF_PROG_TEST_RUN [1]). This bench-
mark runs a given XDP program 10000 times
over the same packet and returns a few measures,
described below. In the experiment, this was
repeated 36 times. Packets are based on a sam-
ple of previous attacks. Compared to the second
benchmark described in Section 3.1.2, CPU time
consumption figures are stable, but it doesn’t
really reflects production traffic (which is more
diverse).

CPU Time and Latency The fist measure
is the time used to run the eBPF program on
each packet. This is collected for each packet
and average along with quantiles and median
are reported. It is worth noting that the eBPF
code is not interrupted, as it is running inside
the kernel, in the eBPF virtual machine. This
CPU time hence gives us the latency introduced
by the l4drop system. For this measure, standard
deviation is quite low, usually around ±1%.

Throughput As the size of a given packet is
known, throughput can be deduced from the pre-
vious measure, on each packet. The figures are
similarly aggregated in an array. Due to the
variations in size of the packet and considering
that the execution time is quite low (a few dozen
nanoseconds) and varies a bit when measured
on an individual packet, the standard deviation
is very high (usually around ±150 %.). This
measure is thus not used and not reported. The
results from the second benchmark are used in-
stead, see Section 3.1.2

Return Code The kernel facilities give the
return code of the XDP program. This result is
used to ensure we only collect measures like CPU

time for packets going through the whole chain
of rulesets. Indeed, time for dropping packets
can correspond in a different work performed and
would thus skew the final results. For instance,
if we have three rulesets and a packet is dropped
by the second ruleset, code from the third ruleset
will not be executed, as dropping a packet takes
effect immediately.

3.1.2 Benchmark 2

As discussed in Section 3.1.1, the first bench-
mark doesn’t properly reflects production traffic.
The second one tends to replicate production
conditions. It surfaces mostly the same mea-
sures and thus can be compared to the first one.
We observed less stable results, so we used this
benchmark to ensure that the results were consis-
tant with the first one. Creating this benchmark
turned out to be more challenging, and we faced
multiple obstacles; some are described below.

CPU Time and Latency Various methods
were attempted to get execution time for the
XDP programs in XDPD, including l4drop.

eBPF Map Inside Programs A fist idea was
to store the the current time in nanoseconds when
entering an eBPF program and then substract
this time to the current time at the end of the pro-
gram. This would then be stored in a eBPF map,
accessible in from user space programs, where
the measurement could be gathered. Two maps
can be used, one accumulating time, the other
counting the number of iterations. It is thus
possible to extract average time of execution for
the part of the program between the two calls
to ktime_get_ns. It is worth noting that these
maps are PER_CPU, so that mesurement is accu-
rate even with multiple programs running con-
currently on various CPU cores.

The advantage of this approach is that it is rel-
atively straightforward to implement on a test
eBPF program. It is also fairly reliable because
the program cannot run without the measure-
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ment being performed.
The drawbacks of this approach is that it cannot
account for tail calls without significant adap-
tations, in particular to share a map between
various programs. This would result in a loss in
reliability. It also introduce a significant overhead
and production programs tend to have various
sections to log passed or dropped packet, charac-
teristics, which results in additional complexity
to make sure to update all values in all cases. All
of this would have required significant changes
to the existing l4drop code base. As a result, a
small program similar using maps as described
in Section eBPF Map Inside Programs was used
to test another method and ensure its accuracy.

KProbes In order to gather insights on a run-
ing XDP program, we have choosen KProbes.
These are probes that can be attached mainly to
functions in the kernel. We had to find a “good
candidate” to probe: specific functions (such as
bpf_prog_run_xdp() veth_xdp_rcv_skb() or
veth_xdp_rcv_one()) are usually inlined and
cannot be kprobed. On the other hand, higher
level functions are not, but there’s more boiler
plate code, so the results are less accurate. For
this benchmark, we have placed probes on the
entry and exit of veth_poll(). We are thus get-
ting an estimation of the runtime of all the XDP
programs (the sampler, l4drop and l4lb), along
with some constant factor, due to the surrounding
code. This tend to make the numbers less stable
and the measure is less direct than with the first
benchmark. These results were nonetheless con-
sistant with what we got from the test program,
which gave us confidence in this measurement.
In the future, as new versions of the Linux kernel
get adopted more widely, the method exposed in
Section 5.2 could be used to get better precision
and some complementary informations.

Throughput In this second benchmark, two
Linux namespaces are used, a receiving and send-
ing namespace. The receiving namespace con-
tains a server of the iperf [?] program, along with
XDPD and thus, l4drop. In the sending names-

pace runs an iperf client. Iperf is a speed test
tool, which generates traffic between a server and
a client and reports the throughput. Even if
throughput number are not always stable enough
to detect small variations of performance between
programs, medium or big variations are still ac-
curately accounted for.

Return Code Return code could not be
checked directly in the environment similar to pro-
duction. Yet, they could be checked as dropped
packets are reported by the monitoring facilities
in XDPD. Also, dropping packets between the
iperf client and server results in errors from this
program. As a result, it is possible to make sure
that no packets are dropped and that the mea-
sured values relate to the process of going through
the whole pipeline of XDP programs.

4 Results

eBPF programs have the ability to tail call from
one another, i.e. the execution of one program
can stop at some point and continue in another
eBPF program. The first improvement to be mea-
sured with our tools is the performance benefit
brought by Linux kernel version 5.5. This also
gives an estimation of the cost of a tail call across
various kernel versions. This will be a valuable
insight in the rest of our work.

4.1 Benchmark 1

For these measurements, lower is better.

4.1.1 One Rule per Ruleset

A first experiment uses rulesets of one rule each.
The impact of tail calls is important, as they have
a significant share of the total execution time.

On Figure 1, the purple, red and green bars rep-
resent median CPU time for a ruleset of one rule.
As one can see, even though the three rules are
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slightly different, the execution time for each is
quite consistent and stable, even across different
kernel versions. The orange bar corresponds to
20 rulesets of one rule, tail calling into one an-
other. Finally, the blue bar shows median CPU
time for the same rulesets as on the orange bar,
but merged into one eBPF program, without tail
calls. As it was verified that the number of in-
structions between the orange bar and the blue
bar are comparable, the difference between the
two bars is exactly the time spent in the 19 tail
calls.

From data points in Figure 1, it can be inferred
that the cost of tail calls (the difference between
the merged rulesets and the tail called rulesets,
i.e. between the blue and the orange bar) is of
497 nanoseconds (ns) on the metal named testM7
with kernel 5.4 while it is reduced to 101 ns with
kernel 5.5. As there are 19 tail calls, the average
cost of one tail call drops to 5 ns from 26 ns, an
improvement of about 81 %.

Metal testM8 has more CPU cores, with a higher
frequency, as seen on Table 1. Consequently, tail
calls were taking less time, at about 25 ns each.
Nevertheless, the cost of one tail call drops to 5
ns with the new kernel version, an improvement
of about 80 %.

4.1.2 300 Rules per Ruleset

A second experiment uses rulesets of 300 rules
each. Tail calls have a smaller share of the total
execution time, compared the previous experi-
ment.

On Figure 2, the green bar represents median
CPU time for a ruleset of 300 rules. If we compare,
on testM8, the time spent in a ruleset of 300 rules
(377 ns) and the time spent in a ruleset of one
rule (29 ns), we infer that the cost of the 199 rules
account for 348 ns, so the average cost of this
particular type of rule is less than 2 ns. It is worth
noting that this rule is not the most complicated,
although it is a common one in production.

The orange bar on Figure 2 corresponds to two

rulesets of 300 rules, tail calling into one another.
Finally, the blue bar shows median CPU time
for the same rulesets as on the orange bar, but
merged into one eBPF program, without tail calls.
As it was verified that the number of instructions
between the orange bar and the blue bar are
comparable, the difference between these two
bars is exactly the time spent in the unique tail
call between these two rulesets.

It can be inferred from data of the graph of Fig-
ure 2 that kernel 5.5 brings shorter runtime com-
pared to version 5.4, although exact duration of
the tail call is not always visible. For instance,
on testM7, the scenario with a tail call requires
1268 ns with kernel 5.5 while it lasts for 1333 ns
with kernel version 5.4. The same happens on
the machine named testM8.

4.2 Benchmark 2

4.2.1 CPU Time

For these measurements, lower is better, as it is
the part of the second benchmark were CPU time
is discussed. Conditions are the same as the first
benchmark.

General Observations The kernel probe used
(veth_poll) returns an average time for the
probed function to run. This includes the time to
run the XDP code as well as the code around it
in the function. These numbers are still quite sta-
ble, with a typical standard deviation around 2 %.
Plus, due to the conditional code in the function,
execution time tend to be centered around two
values. As a result, graphs like on Figure 3 or on
Figure 4 feature three groups of bars. The first
group from the left corresponds to the average
for values inferior to 16 000 ns (hence the name
of these data, “KProbeLess16K”); the second
group, values superior to this threshold and the
last group is an average over the preceding values
as a whole.
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Machine
name

Machine
from the

laboratory?
CPU

Number
of core

(logical)

Frequency
(GHz)

Maximum
frequency

(GHz)

RAM
(GB)

testM7 Yes Intel(R) Xeon(R)
Silver 4116 48 2.10 3 188

testM8 Yes Intel(R) Xeon(R)
Platinum 6162 96 1.90 3.5 188

Table 1: Machines used to run the benchmarks.

One Rule per Ruleset This is in line with
the conclusions of the same paragraph for the
first benchmark: tail calls are less costly with
the newer kernel version. The difference between
the two kernel versions is statistically significant
with the T-Test: over the dataset “KProbeTotal”,
the gain with kernel 5.5 is of about 20 % on
testM8 and of 19 % on testM7. In both cases,
the rounded p reported is 0.000.

Discrepancy Between the Two Bench-
marks As there is a constant code running
around the function actually executing the
XDP code, the total time spent in tail calls ac-
counts for a lower share of the total and gains
over tail calls have a lower impact as a result.
However, for kernel version 5.5 on testM7 in the
first benchmark, XDP code take roughly 153
ns and in the second benchmark, average total
time for “KProbeTotal” is roughly 19069 ns. In
proportion, this should result in a much lower im-
provement due to tail calls. Various explanations
come to mind. First, between the two kernel ver-
sions, some parts of the code could have changed
resulting in performance improvements. Second,
the actual time to run the eBPF code is bigger
than in the first benchmark. Third, the tail call
gain is bigger than in the first benchmark. This
is further discussed in Section 5.2.

300 Rules per Ruleset This is again in line
with the conclusions of the same paragraph for the
first benchmark: tail calls are less costly with the
newer kernel version. With the same statistical
significance test and a rounded p of 0.000 still, a
1.4 % improvement is reported on testM7 and a

3.5 % improvement on testM8.

4.2.2 Throughput

For these measurements, higher is better, as it is
the part of the second benchmark were through-
put is discussed. Improvements with the new
kernel version are similar to the ones seen on
CPU time for this benchmark.

One Rule per Ruleset In this case, a signifi-
cant drop in the difference between the case where
rulesets are merged (the blue bar on Figure 5)
and the case where tail calls are placed between
rulesets (the orange bar on Figure 5). In other
words the 20 XDP programs with tail calls (or-
ange bar) run faster. With the same significance
test, where p roughly equal 0.000, throughput is
increased by 17 % on testM7 and by 23 % on
testM8.

300 Rules per Ruleset In this case, the drop
in the difference is slight, as one can see by com-
paring the blue bar on Figure 6 and the orange
bar on Figure 6. In other words the XDP program
runs slightly faster and, with the same signifiance
test, where p roughly equal 0.000, throughput is
slightly increased by 0.7 % on testM7 and 3 %
on testM8.
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5 Discussion

5.1 Impact

In production at Cloudflare, we typically have
4 tail calls in our XDP stack. Thus, sparing
20 ns per tail calls results in a gain of 80 ns
per packet. During a DDoS attack peaking at
754 million packets per second [8], the improve-
ment discussed in this article results in about one
minute of computation saved accross Cloudflare’s
infrastructure for every second of the peak of the
attack.

5.2 Improvements

To tackle the issues encountered, various technics
could be used as a complement or replacement
of what was done here. For instance, a recent
addition to bpftool is the profile subcommand. It
gives more detailed insights and could be used to
get more precise results and hopefully solve prob-
lems encountered in Section 4.2.1. Perf was not
explored at first because the trace subcommand
was deemed to be too much overhead and record,
to be insufficient. Deeper investigations may still
be required. A final idea to explore is enabling
stats on BPF programs.

6 Conclusion

In this paper, we have summarised the land-
scape of the spectre mitigation in XDP subsystem.
Then, we have compared the performance mea-
sured between Linux kernel 5.4 and 5.4: the for-
mer includes retpoline mitigation, and the latter
tries to replace them with direct calls. Those ex-
periments have been carried out using two bench-
marks. The first benchmark was used to measure
the duration of tail-calls: we compared the execu-
tion time of one program doing several tail-calls
with a program whose rule-set have been merged
before, thus removing the tail-calls. This has
demonstrated that: i. each tail call is 80 % faster
if the retpolines are converted into direct calls

and ii. after this optimization, the cost per tail-
call is about 5 ns.
The second benchmark was used to reproduce
production traffic; over a chain of two programs
relatively big (as seen in production), with only
one tail call between them, the gain is about 5 %.
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Figure 1: Benchmark 1: CPU time measured across various metals and various kernel versions,
using rulesets of one rule.
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Figure 2: Benchmark 1: CPU time measured across various metals and various kernel versions,
using rulesets of 300 rules.
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Figure 3: Benchmark 2: CPU time measured across various metals and various kernel versions,
using rulesets of one rule.
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Figure 4: Benchmark 2: CPU time measured across various metals and various kernel versions,
using rulesets of 300 rules.
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Figure 5: Benchmark 2: throughput measured across various metals and various kernel versions,
using rulesets of one rule.
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Figure 6: Benchmark 2: throughput measured across various metals and various kernel versions,
using rulesets of one rule.
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