PTQ

Per Thread Queues

Tom Herbert
Linux Plumbers Conference, Aug. 2020




Abstract

Assign threads their own dedicated network hardware
queues for isolation and performance

Design areas

e Configuration and management- cgroups
e Transmit - extend XPS

e Receive - extend aRFS
o

RX queue processing - interrupt, bust poll, comp
gueue + sleeping poll




Assigning queues to threads

e Global queues
o Abstract out HW queues to global system space
o <gqid>-> <device, queue#>
o [sys/class/net/<dev>/queues/{rx,tx}-<n>/global_queue_mapping

e New cgroup controller: net queues

o Network queues are managed as another system resource (
o Assign pool of “global queues” for transmit and receive.

e Assignment to threads
o Struct task augmented to contain 16 bit RX and TX queue

o At task creation (e.g. fork), assign queues to task
o Select an RX and TX from cgroup queue ranges




Transmit path

Transmit path selects using queue assigned to the
running thread.

e At socket operations: query current task and save TX

gueues assigned to task in the socket

e On transmit (netdev_pick_tx)
o Check if global TX queue is set in socket
o Map the global queue to HW queue for TX device
o Send to resulting queue




Recive path: Start with aRFS

aRFS: Host programs hardware for flows using
ndo flow steer bases on queue->CPU assoc.

aRFS deficiencies:
Scaling: need to manage state for each flow
State thrashing: on thread reschedule all reprogram all the
threads sockets to different queue for new CPU
Lag: can only program flow after receiving packets
OOO packets: when flow switches queues OOOQO delivery
No isolation: queues are shared




Extending aRFS

e RFS tables store either CPU or global queue
o Save queue in socket calls
o RX queue in sock to RFS table entry

e Do RFS lookup on receive. If global queue is returned

o Map global queue to HW queue for RX device
o Check is RX queue equals found HW queue
o ndo_flow_steer on flow to HW queue if different

e Addresses
o State thrashing: Receive queue follows thread
o 0OO0O and lag since queue change is now a rare event




tc flower steering+aRFS in concert

hw_tc can map to 16 queue groups (could extend tc
flower to allow “rx_queue <global queue list>")
Filter corresponds to application and queue list
corresponds to RX queues for the apps cgroup

As long as stateless mechanisms give the right
answer, don’t need flow state

l.e. don't instantiate HW flow if packets received on
right queue, fallback to ndo_flow_steer when wrong
Addresses isolation+scaling




PTQ flow steering

struct sock Thread

: struct rps_sock_flow_table
, : é et ndo_flow_steer
sk_tx_gqid_mapping->6 < struct task : Entry is either last CPU or — =

ptq_queues RX global queue (mask :]r:g;;rgsﬂ Cioigid
(struct : encoded)
net_queue_pair) :

Set in socket calls from
current->ptg_queue.txq_id

Set in socket calls copy from e 8 Queue6 | ) ) )
txq_id -> 6 . current->ptq_queue.rxq_id 434 cPU9 \7 Map entry with ggid to dqid

struct sock J rxq_id -> 6 508 cPU2 and set in dev flow table in
sk_tx_gqgid_mapping->6 < 2

Queue 7 A— get_rps_cpu

/
cgroup ethO eth1

Transmit “Net_queues” struct rps_dev_flow_table struct rps_dev_flow_table

In netdev_pick_tx, map tx-queues -> 5-9 Each rps_dev_flow entry entry Each rps_dev_flow entry entry
socket gqid to device queue xsquoties == 5-9 struct rps_cpu_qid struct rps_cpu_qid

ID for transmitting device < tx—ass:_gn =]
rx-assign -> 1 233 Queue56 4T 15 CPU2

symmetic -> 1 133 CPU9 133 CPU9

B 513 Queue 57 < 513 Queue 27
Thread . =
struct sock N :

tx_queue_map rx_queue_map“. tx_queue_map rx_queue_map
Sk_tX _gqid_mapping->7 - struct task : (netdev_queue_map) (netdev_queue_map) (netdev_queue_map) (netdev_queue_map)
ptq_queues :

Set in socket calls from (struct :
current->ptq_queue.txq_id net_queue_pair)

50 20
|5t 21
52 22
53 2

L]
1
2
H | 3
txq id > 7 \ ; 2
: 6
T

struct sock rxq_id > 7 £

27
27

sk_tx_gqid_mapping->7




Kicking RX processing
e Interrupts: probably not very practical to continuously

move interrupt affinity when thread moves

e Busy polling: straightforward, but we incur costs of it
e Sleeping poll with completion queue

o Application polls device and sleeps

o One CPU busy polls on RX completion
o Reverse map ready RX queue to thread
O

Schedule thread (combine with Shenango for fast
scheduling)




Status

e RFC patch sent to netdev

e Testing and performance analysis started

e Patch was cgroup v1, v2 support seems
straightforward




Futures

Support for TX prio (per thread TX priority queues)
Extend hw_tc to allow more than 16 classes.
Alternative might be arbitrary group of queues
eBPF for configurable policies (queue select)

tc queue steering works great if the #queues ==
#app_ threads, mismatch causes an imbalance
How to go from stateful full back to stateless?
RFS tables are caches, can we eliminate them?
Align SO_REUSEPORT with tc steering

64 bit hashes!




End slide




