
PTQ
Per Thread Queues

Tom Herbert
Linux Plumbers Conference, Aug. 2020

Assign threads their own dedicated network hardware
queues for isolation and performance

Design areas
● Configuration and management- cgroups
● Transmit - extend XPS
● Receive - extend aRFS
● RX queue processing - interrupt, bust poll, comp

queue + sleeping poll

Abstract

● Global queues
○ Abstract out HW queues to global system space
○ <gqid> -> <device, queue#>
○ /sys/class/net/<dev>/queues/{rx,tx}-<n>/global_queue_mapping

● New cgroup controller: net_queues
○ Network queues are managed as another system resource (
○ Assign pool of “global queues” for transmit and receive.

● Assignment to threads
○ Struct task augmented to contain 16 bit RX and TX queue
○ At task creation (e.g. fork), assign queues to task
○ Select an RX and TX from cgroup queue ranges

Assigning queues to threads

Transmit path selects using queue assigned to the
running thread.

● At socket operations: query current task and save TX
queues assigned to task in the socket

● On transmit (netdev_pick_tx)
○ Check if global TX queue is set in socket
○ Map the global queue to HW queue for TX device
○ Send to resulting queue

Transmit path

aRFS: Host programs hardware for flows using
ndo_flow_steer bases on queue->CPU assoc.

aRFS deficiencies:
● Scaling: need to manage state for each flow
● State thrashing: on thread reschedule all reprogram all the

threads sockets to different queue for new CPU
● Lag: can only program flow after receiving packets
● OOO packets: when flow switches queues OOO delivery
● No isolation: queues are shared

Recive path: Start with aRFS

● RFS tables store either CPU or global queue
○ Save queue in socket calls
○ RX queue in sock to RFS table entry

● Do RFS lookup on receive. If global queue is returned
○ Map global queue to HW queue for RX device
○ Check is RX queue equals found HW queue
○ ndo_flow_steer on flow to HW queue if different

● Addresses
○ State thrashing: Receive queue follows thread
○ OOO and lag since queue change is now a rare event

Extending aRFS

● hw_tc can map to 16 queue groups (could extend tc
flower to allow “rx_queue <global queue list>”)

● Filter corresponds to application and queue list
corresponds to RX queues for the apps cgroup

● As long as stateless mechanisms give the right
answer, don’t need flow state

● i.e. don’t instantiate HW flow if packets received on
right queue, fallback to ndo_flow_steer when wrong

● Addresses isolation+scaling

tc flower steering+aRFS in concert

PTQ flow steering

● Interrupts: probably not very practical to continuously
move interrupt affinity when thread moves

● Busy polling: straightforward, but we incur costs of it
● Sleeping poll with completion queue

○ Application polls device and sleeps
○ One CPU busy polls on RX completion
○ Reverse map ready RX queue to thread
○ Schedule thread (combine with Shenango for fast

scheduling)

Kicking RX processing

● RFC patch sent to netdev
● Testing and performance analysis started
● Patch was cgroup v1, v2 support seems

straightforward

 Status

● Support for TX prio (per thread TX priority queues)
● Extend hw_tc to allow more than 16 classes.

Alternative might be arbitrary group of queues
● eBPF for configurable policies (queue select)
● tc queue steering works great if the #queues ==

#app_threads, mismatch causes an imbalance
● How to go from stateful full back to stateless?
● RFS tables are caches, can we eliminate them?
● Align SO_REUSEPORT with tc steering
● 64 bit hashes!

Futures

End slide

