\

” Multiple XDP programs per
interface: Status and
outstanding issues

Toke Hailand-Jargensen

Linux Plumbers Conference - Networking and BPF Summit
August 2020

Q Red Hat Multiple XDP programs per interface: Status and outstanding issues

Outline

e Problem statement
e Currently implemented solution
e Qutstandingissues and discussion

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

Problem statement

Why do we need more than one XDP program on each interface?

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

Why do we need multiple XDP programs

There is only one XDP hook per netdev, so an application that wants to use XDP
has to own the XDP hook.

But what if a user wants to install more than one such application?
For example - it should be possible to run

e XDP-based DDOS protection

e XDP-accelerated IDS (e.g., Suricata)
e Custom XDP program

This will make it more attractive to add XDP support.

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

Prior state of the art

In most large deployments of XDP, all programs are written by the same people
Inside an org.

But even here, we have seen a need for running multiple programs:

e Katran xdp_root
e Cloudflare xdpdump

Both rely on - l.e., earlier programs need to know about later ones.

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

Design goals
From my talk at LPC 2019:

High-level goal: execute multiple eBPF programs in a single XDP
hook.

With the following features:

l. Arbitrary execution order
e Must be possible to change the order dynamically
e fxecution chain can depend on program return code
2. Should work without modifying the programs themselves

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

https://linuxplumbersconf.org/event/4/contributions/460/

The solution

What works today, and how does it work?

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

New kernel features used for multiprog

e BPF freplace function replacement
® | oad one BPF program to replace a function in another

e Atomic replace of XDP programs
m Supply expected existing program FD when attaching XDP program
s Orusebpf 1link XDP attachment

With this, we can build multi-prog support in userspace at BPF program load time.

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

The XDP dispatcher

static const struct xdp dispatcher config {
__u8 num progs enabled;

_u32 chain call actions[10]; /* bitmask of actions to chain call */

_u32 run prios[10]; /* priority (for sorting programs in execution order) */
} conf = {}; /* populated at load */
int progO (struct xdp md *ctx) { return XDP PASS; } /* repeat for prog0O()..prog9() functions */

SEC ("xdp/dispatcher")
int xdp dispatcher (struct xdp md *ctx)
{

int ret;

/* handle prog0 */
if (conf.num progs enabled < 1) /* for verifier dead code elimination */

goto out;
ret = prog0 (ctx) ;
if (! ((1U << ret) & conf.chain call actions([0]))

return ret;
/* end prog0 - repeat for progl..prog9 */

return XDP PASS;

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

Loading the dispatcher

int load dispatcher (int num progs, struct xdp dispatcher config *config)

{
struct bpf_object *obj;
struct bpf map *map;

obj = bpf object open("xdp-dispatcher.o");
map = bpf map next (NULL, obj);

config->num progs enabled = num progs;

for (int i = 0; 1 < num progs; i++) {
if (config->chain call cations[1i])
continue;
config->chain call actions[1i] = (1U << XDP_ PASS);
config->run prios[i] = 50;

}

bpf map set initial value (map, &config, sizeof (config));

bpf object load(obj);
return bpf program fd(bpf object find prog by idx(obj,
}

0)):

Red Hat Multiple XDP programs per interface: Status and outstanding issues -

Toke Hgiland-Jergensen

10

Attaching component program (single prog)

int attach prog to dispatcher (struct bpf object *bpf obj)
{

struct bpf program *bpf prog; struct xdp dispatcher config config = {};
int dispatcher fd, link fd, num progs = 1;

bpf prog = bpf object find program by idx(bpf obj, 0);
dispatcher fd = load dispatcher (num progs, &config);

bpf program set attach target (bpf prog, dispatcher fd, "prog0"):;
bpf program set type (bpf prog, BPEF PROG TYPE EXT);

bpf object load(bpf obj);

link fd = bpf raw tracepoint open (NULL, bpf program fd(bpf prog)):;

bpf obj pin(bpf program fd(bpf prog), "/sys/fs/bpf/xdp/dispatch-IFINDEX-DID/prog0-prog");
bpf obj pin(link fd, "/sys/fs/bpf/xdp/dispatch-IFINDEX-DID/prog0-1ink");

return dispatcher fd;

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

1

Adding another program (doesn’t work yet)

int attach second program(int old dispatcher fd, int new prog fd)
{

struct xdp dispatcher config old config = {};
int map fd, prog fds[2] = { -1, new prog fd };
__u32 map key = 0;

char buf[100];

map fd = get map from prog id(old dispatcher);
bpf map lookup elem(map fd, &map key, &old config);

sprintf (buf, "/sys/fs/xdp/dispatch-%d-%d/progl-prog", ifindex, get prog id(old dispatcher fd));
prog fds[0] = bpf object get (buf);

sort by run prio(&prog fds, &old config);
new dispatcher fd = load dispatcher (2, &old config);

bpf raw tracepoint open (NULL, prog fds[0], new dispatcher fd, get btf id("prog0")):
bpf raw tracepoint open (NULL, prog fds[l], new dispatcher fd, get btf id("progl")):

return new dispatcher fd;

}

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

Attaching to aninterface

int attach to interface(int ifindex, struct bpf object *bpf obj)
{

int err, new dispatcher fd, old dispatcher id, old dispatcher fd = -1, xdp flags = 0;

retry:
old dispatcher id = get prog id from ifindex(ifindex);
if (old dispatcher id) {
struct bpf program *prog = bpf object find program by idx (bpf obj, 0);
old dispatcher fd = bpf prog get fd by id(old dispatcher id);
new dispatcher fd = attach second program(old dispatcher fd, bpf program fd(prog)):

} else {
xdp flags = XDP_FLAGS UPDATE IF NOEXIST;
new dispatcher fd = attach prog to dispatcher (bpf obj);

DECLARE LIBBPF OPTS (bpf xdp set link opts, opts, .old fd = old dispatcher fd);
err = bpf set link xdp fd opts(ifindex, new dispatcher fd, xdp flags, &opts);
if (err && errno == EEXIST)

goto retry; ~ replaced since we qu

return err;

}

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

13

Determining program order and actions

BPF programs encode priority and chain call actions in BTF,

<linux/bpf.h>
<bpf/bpf helpers.h>
<xdp/xdp helpers.h>

struct {
__uint(priority, 10);
__uint (XDP_PASS, 1);
} XDP RUN CONFIG (xdp pass);

SEC ("prog'")
int xdp pass(struct xdp md *ctx)
{

return XDP PASS;

}

char license[] SEC('"license'") = "GPL";

These serve as defaults when loading programs onto an interface.

Red Hat Multiple XDP programs per interface: Status and outstanding issues Toke Hgiland-Jargensen

14

The libxdp library

The libxdp library encapsulates all this:

int main ()

{
struct xdp_ program *prog;
int err;
prog = xdp program open file("my-program.o", '"section name", NULL) ;
prog = xdp program from bpf obj (my obj, "section name');
xdp program set run prio(prog, 100);
xdp program set chain call enabled(prog, XDP PASS, true);
err = xXdp program attach(prog, IFINDEX, XDP MODE NATIVE, O0);

xdp program close (prog);
return err ? EXIT FAILURE : EXIT SUCCESS;

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jergensen

https://github.com/xdp-project/xdp-tools/tree/master/lib/libxdp

Working example

Loading multiple programs at once with xdp-loader works:

sudo ./xdp-loader status
CURRENT XDP PROGRAM STATUS:

Interface Prio Program name Mode ID Tag Chain actions

lo <no XDP program>

ethO <no XDP program>

testns xdp dispatcher native 176 d51e469e988d81da

=> 10 xdp pass 181 3b185187£1855c4c XDP_ PASS

=> 50 xdp drop 186 57cd311f2e27366b XDP PASS
However, still
Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

[S

https://github.com/xdp-project/xdp-tools/tree/master/xdp-loader

Outstanding issues

Red Hat

Multiple XDP programs per interface: Status and outstanding issues

- Toke Hgiland-Jgrgensen

17

Missing kernel features (soon to be resolved)

e Attaching freplace programs in multiple places
m Attach existing progs to new dispatcher, then atomically replace on interface
= WIP (by me)

o between replacing/replaced programs

= Verifier doesn't treat freplace programs exactly like parents
= WIP (by Udip Pant)

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

18

More fundamental issues with using freplace

Using freplace presents a few issues:

e Programs must be loaded as freplace (can't change after load)
= Option to “promote” one XDP program to freplace another?
e XDP programs can't use freplace themselves
= We are “squatting” on a potentially useful feature
e Only
m Can't use freplace at all on non-x86_64!

Are these acceptable, and/or can they be resolved?

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

19

How to ensure userspace coordination?

Doing multi-prog this way means userspace applications agree on:

e Structure of dispatcher program

e How to obtain references for component progs/bpf_links (pinning path)
e Format of BPF program metadata (prio + chain call actions)
e Synchronisation primitives (locking / atomic replace semantics)

This is a protocol for cooperative multiprog operation. Libxdp is an
implementation of this protocol.

Can we achieve consensus on this?

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

20

The need for pinning (and cleaning up)

Regular (non-multiprog) XDP programs stay attached after load.
To replicate this, libxdp currently pins all component programs, which has a few

Issues:
e Tied to a specificbpffs instance (problem with namespaces)

e No automatic when interface disappears

How do we resolve this?
One idea: Andrii suggested “sticky” bpf_links that share lifetime with the object

they attach to.

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

21

Other issues? Questions?

e xdp-loader and libxdp: https://github.com/xdp-project/xdp-tools
e See also https://xdp-project.net

Red Hat Multiple XDP programs per interface: Status and outstanding issues - Toke Hgiland-Jargensen

22

https://github.com/xdp-project/xdp-tools
https://xdp-project.net/

