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Who am I
● FOSS developer since 2006
● EFL developer and release manager
● Linux kernel ieee802154 subsystem 

maintainer
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Agenda
● IPv6 over LoWPAN
● Linux-wpan
● rpld
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IPv6 over LoWPAN
(6LoWPAN)
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Products
● Products with IEEE 802.15.4 transceivers (using 6LoWPAN, 

newer ZigBee profiles or OpenThread):

● Nest devices (e.g. thermostat, protect, etc)

● Google WiFi / OnHub router

● IKEA Tradfri system

● Philips Hue light system

● And many, many more
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Motivation 6LoWPAN
● “Things” might have restricted wireless connectivity
● Using IPv6 instead of something proprietary allows 

the usage of existing and proven protocols driving 
the Internet

● But unmodified TCP/IP protocol headers can clash 
with MTU limitations

● Things often only need to transfer small amounts of 
data



7

IEEE 802.15.4
● IEEE specifications for Low-Rate Wireless Personal Area

Networks (LoWPAN)
● Not only low-rate, but also low-power
● PHY and MAC layer with star and peer-to-peer topologies
● Addressing but no routing defined
● Mesh routing possible with layers on top
● Designed for small sensors to run months/years on battery with the right duty cycle
● 127 bytes MTU and 250 kbit/s
● Often mixed-up with ZigBee as it is used as PHY and MAC layer
● Compared to Bluetooth it is older than BTLE and less complex
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6LoWPAN
● Physical and MAC layer defined by 

IEEE 802.15.4

● Series of IETF specifications from 
2007 onwards (RFCs 4944, 6282, etc)

● Goal was to use IPv6 in sensor 
networks based on IEEE 802.15.4

● Direct IP addressing of nodes

L3 Network Layer
L4 Transport Layer

L1 Physical Layer

L5 Application Layer

L2 Data Link Layer

IP
TCP | UDP | ICMP

Ethernet PHY

Application

Ethernet MAC

IPv6
UDP | ICMPv6

6LoWPAN

IEEE 802.15.4 PHY

Application

IEEE 802.15.4 MAC

● Adaptation layer between data-
link and network layer

● Address auto-configuration

● Frame encapsulation and 
fragmentation

● Header compression
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The Header Size Problem
● Worst-case scenario calculations
● Maximum frame size in IEEE 802.15.4: 127 bytes
● Reduced by the max. frame header (25 bytes): 102 bytes
● Reduced by highest link-layer security (21 bytes): 81 bytes
● Reduced by standard IPv6 header (40 bytes): 41 bytes
● Reduced by standard UDP header (8 bytes): 33 bytes
● This leaves only 33 bytes for actual payload
● The rest of the space is used by headers (~ 3:1 ratio)

Frame Header (25) LLSEC (21) IPv6 Header (40) UDP Payload (33)
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The Header Size Solution
● IPv6 with link-local and UDP on top

● IPHC with NHC for UDP

● The 48 bytes IPv6 + UDP header could in

the best cases be reduced to 6 bytes

● That allows for a payload of 75 bytes (~ 2:3 ratio)

Frame Header (25) LLSEC (21) 6 Payload (75)

Dispatch (1) LOWPAN_IPHC (1) LOWPAN_NHC (1) UDP Ports (1) UDP Checksum (2)
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Linux-wpan
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Why linux-wpan?
● Goal: IEEE 802.15.4 and 6LoWPAN support in mainline
● Platforms already running Linux would benefit from

native IEEE 802.15.4 and 6LoWPAN subsystems
● IEEE 802.15.4 transceivers can easily be added to

existing hardware designs (SPI + few GPIOs)
● Battery powered sensors are more likely to run a RTOS like RIOT, 

Contiki or Zephyr, but they need a border router
● Started in 2008 as linux-zigbee project, from 2012 

mainline (renamed to linux-wpan)
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Development Boards
● Raspberry Pi’s with Openlabs shield (AT86RF233)

● Ci40 Creator (CA-8210)

● Transceivers can be hooked up via SPI

(drivers have devicetree bindings)

● ATUSB USB dongle
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Network Interfaces
● The wpan0 interface shows up 

automatically

● Ieee802154 specific configuration over 
netlink, e.g. with wpan-tools

● Setting up the basic parameters:

$ ip link set lowpan0 down

$ ip link set wpan0 down

$ iwpan dev wpan0 set pan_id 0xabcd

$ iwpan phy phy0 set channel 0 26

$ ip link add link wpan0 name lowpan0 
type lowpan

$ ip link set wpan0 up

$ ip link set lowpan0 up

Setting up the interface in promiscuous 
mode:

$ iwpan dev wpan0 del

$ iwpan phy phy0 interface add monitor%d 
type monitor

$ iwpan phy phy0 set channel 0 26

$ ip link set monitor0 up

$ wireshark -i monitor0

● No automatic channel hopping (changing 
the channel manually in the background is 
possible)
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Socket Interfaces
● AF_INET6 Socket

● Can be used like a normal IPv6 socket

● Transparently handled

sd = socket(PF_INET6, 
SOCK_DGRAM, 0); 

dst.sin6_family = AF_INET6;

sendto(sd, ...);

● AF_IEEE802154 Socket
● Direct IEEE 802.15.4 communication
● Short and extended addressing schemes as well 

as network PAN ID handling

sd = socket(PF_IEEE802154, SOCK_DGRAM, 0);

dst.family = AF_IEEE802154;

dst.addr.pan_id = 0x0023;

dst.addr.addr_type = IEEE802154_ADDR_LONG;

memcpy(&dst.addr.hwaddr, long_addr, 
IEEE802154_ADDR_LEN);

or

dst.addr.addr_type = 
IEEE802154_ADDR_SHORT;

dst.addr.short_addr = 0x0002;

sendto(sd, ...);
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Current Status
● 6LoWPAN with fragmentation and reassembly (RFC 4944)
● Header compression with IP header compression (IPHC) and 

next header compression (NHC) for UDP (RFC 6282), shared 
with Bluetooth subsystem

● ieee802154 layer with softMAC drivers for at86rf2xx, mrf24j40, 
cc2520, atusb, adf7242, ca8210 and mcr20a

● Hwsim virtual driver module for testing
● USB dongle to be used on your workstation
● Link Layer Security
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New Webpage launched
● Recent effort to move project page

wpan.cakelab.org → https://linux-wpan.org

● Old one was to difficult to maintain and access

● New one is with GitHub pages, well known, easy edits

● Existing content has been moved and a redirect is in 
place

● More content (e.g. rpld) is needed and

better integration with the kernel docs

https://linux-wpan.org/
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Wpanusb - past
● Generic USB device driver (like btusb)
● Originally developed by Andrei Emeltchenko 

@intel
● ieee802154 does not specify an HCI
● Own USB interface spec based on atusb
● Developed together with Zephyr firmware
● Project stalled in 2018 as Andrei has no time
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Wpanusb – future
● Taken over by Koen, Eric and Stefan now
● Extend USB interface spec to be more flexible

e.g. capabilities provided by firmware, different
frequency bands, power levels, permanent
address, etc

● CAN subsystem maintainers expressed interest for a 
similar generic USB driver

● RIOT OS firmware to be developed in parallel

● Zephyr firmware needs to be updated to new spec
● Bare metal or Contiki implementations?
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 Kselftest support
● Hwsim will be hooked in kselftest to give an easy 

way of regression testing

● Will be used in review process

● Useful during network stack re-work’s

● Basic suite of tests to start with (ieee802154 
frames in different sizes, 6lowpan packets in 
different sizes, header compression on and off)
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Linux-wpan Future
● Implement missing parts of the IEEE 802.15.4 specification

● Beacon and MAC command frame support
● Coordinator support in MAC layer and wpan-tools
● Scanning

● Add better support for HardMAC transceivers
● Configuration interface for various header compression modules
● Expose information for routing protocols (started with LQI 

already) 
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RTOS Systems
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RTOS Systems
● Various real time operating systems support IEEE 

802.15.4 and 6lowpan
● RIOT 
● Contiki
● Zephyr
● OpenThread
● MbedOS (nanostack finally open source from mbed-os-

5.7 onwards)
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Comparison
Feature Linux RIOT Contiki Zephyr OpenThread

IEEE 802.15.4: data and ACK frames ✔ ✔ ✔ ✔ ✔

IEEE 802.15.4: beacon and MAC command frames ✘ ✘ ✘ ✔ ✔

IEEE 802.15.4: scanning, joining, PAN coordinator ✘ ✘ ✘ ✔ ✔

IEEE 802.15.4: link layer security ✔ ✘ ✔ ✔ ✔

6LoWPAN: frame encapsulation, fragmentation, addressing ✔ ✔ ✔ ✔ ✔

6LoWPAN: IP header compression (RFC 6282) ✔ ✔ ✔ ✔ ✔

6LoWPAN: next header compression, UDP only (RFC 6282) ✔ ✔ ✔ ✔ ✔

6LoWPAN: generic header compression (RFC 7400) ✘ ✘ ✘ ✘ ✘

6LoWPAN: neighbor discovery optimizations (RFC 6775) Partial ✔ ✘ ✘ ✘

RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks ✔ ✔ ✔ ✔ ✘

Mesh link establishment draft ✘ ✔ ✘ ✔ ✔



 
 

rpld
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RPL
● Routing protocol for low power and lossy networks

● IETF approach, route over protocol

● IPv6 Routing Protocol for Low-Power and

Lossy Networks (RFC6550, RFC6553)

● Tree like topology in a mesh, one parent, n childs

● Constructs a directed acyclic graph in an attempt 
to minimize the routing costs
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       RPL- up and down routes
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rpld
● Unstrung was the Linux user-space reference

● rpld as new alternative 
https://github.com/linux-wpan/rpld

● Part of linux-wpan and only around for a year

● Developed by Alexander Aring

● Netdev Conf 0x14 talk RPL: IPv6 Routing Protocol 
for LLNs

https://github.com/linux-wpan/rpld
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rpld – non-storing mode
● In a nutshell RPL has two modes of operation:

Storing: routes are propagated via ICMPv6 
messages into the routing table

Non-storing: source routing with routing header

● First implementation with non-storing mode on 
Linux by extending the existing Kernel segment 
routing

● https://netdevconf.info/0x14/session.html?talk-ext
end-segment-routing-for-RPL

https://netdevconf.info/0x14/session.html?talk-extend-segment-routing-for-RPL
https://netdevconf.info/0x14/session.html?talk-extend-segment-routing-for-RPL
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rpld – non-storing mode
● Source routing extention header only inserted by 

root node

● IPv6 only

● Forwarding with address swapping and loop 
detection

● Compression of addresses in headers

● Details on kernel implementation in the

mentioned talk



 
 

Thank you!



 
 

Bonus
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Address Auto-configuration & Fragmentation

Stateless address auto-configuration:

● Used for IPv6 networks without DHCP

● Based on layer 2 address

● Extended address uses EUI-64 as is

● Short address uses EUI-48 to EUI-64 mapping

(16 Bit PAN+16 Bit zero+16 Bit short address)

Fragmentation:

● IPv6 requires the link to allow for a MTU of at least 1280 bytes

● Impossible to handle in the 127 bytes MTU of IEEE 802.15.4

● 6LoWPAN adds a 11 bit fragmentation header allows for 2048 bytes

● Fragmentation should still be avoided for best performance
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IPv6 Header Compression (IPHC)

IPHC (RFC6282)
● Deprecates HC1 & HC2 compressions from RFC4944 
● Better compression for global and multicast address, not only link-local
● Compress header fields with common values: version, traffic class, flow

label, hop limit  
● NHC IPv6 Extension Header compression (RFC6282)

– Hop-by-Hop, Routing Header, Fragment Header, Destination Options Header,

Mobility Header

● NHC UDP Header compression (RFC6282)
– Compressing ports range to 4 bits
– Allows to omit the UDP checksum for cases where upper layers handle

message integrity checks
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Generic Header Compression
● Generic approach instead of defining a scheme for each header
● Plugging into NHC
● Useful for header like payload e.g. DTLS or RPL (addresses

elided from dictionary)
● 6CIO option in neighbour discovery messages to indicate

support
● LZ-77 style compression with byte codes (RFC7400)

– Appending zeroes, back referencing to a static dictionary and 
copy



36

Mesh-under
● Allow for fast packet forwarding without travelling the IP 

stack

● IEEE 802.15.4 does not include mesh routing in the MAC 
specification, mesh implementations is an extra layer above 
the MAC but below the network layer

● Various (proprietary) implementations (e.g. WirelessHART, 
ZigBee mesh, RF mesh, etc)

● IEEE 802.15.5 can also to be used for mesh on top of 15.4

● 6LoWPAN specification has a field for mesh headers

● Lost fragments of bigger packets will cause troubles
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Thread
● Mesh network specification from Thread Group

● OpenThread implementation from NestLabs

● Routing Information Protocol (RIP) algorithms are 
used, but not RIP itself

● Distribution of route information is handled by mesh 
link establishment (MLE, IETF drafts dropped)

● MLE allows router to update the tables of routing costs 
periodically in a compressed form

● Due to MLE no on-demand route discovery is needed
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References
● IEEE 802.15.4 specification (PHY and MAC layer)

http://standards.ieee.org/about/get/802/802.15.html

● RFC 4944: Transmission of IPv6 Packets over IEEE 802.15.4 Networks

https://tools.ietf.org/html/rfc4944

● RFC 6282: Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks

https://tools.ietf.org/html/rfc6282

● RFC 7400: 6LoWPAN-GHC: Generic Header Compression for IPv6 over Low-Power Wireless

Personal Area Networks (6LoWPANs)

https://tools.ietf.org/html/rfc7400Lossy Networks

● Linux-wpan source (wpan-tools & rpld) and project pages

https://github.com/linux-wpan

http://standards.ieee.org/about/get/802/802.15.html
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc6282
https://tools.ietf.org/html/rfc7400
https://github.com/linux-wpan
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