
1

ieee802154 and rpld

LPC 2020
IoT Microconference

2020-08-27, Virtual

Stefan Schmidt
stefan@datenfreihafen.org

2

Who am I
● FOSS developer since 2006
● EFL developer and release manager
● Linux kernel ieee802154 subsystem

maintainer

3

Agenda
● IPv6 over LoWPAN
● Linux-wpan
● rpld

4

IPv6 over LoWPAN
(6LoWPAN)

5

Products
● Products with IEEE 802.15.4 transceivers (using 6LoWPAN,

newer ZigBee profiles or OpenThread):

● Nest devices (e.g. thermostat, protect, etc)

● Google WiFi / OnHub router

● IKEA Tradfri system

● Philips Hue light system

● And many, many more

6

Motivation 6LoWPAN
● “Things” might have restricted wireless connectivity
● Using IPv6 instead of something proprietary allows

the usage of existing and proven protocols driving
the Internet

● But unmodified TCP/IP protocol headers can clash
with MTU limitations

● Things often only need to transfer small amounts of
data

7

IEEE 802.15.4
● IEEE specifications for Low-Rate Wireless Personal Area

Networks (LoWPAN)
● Not only low-rate, but also low-power
● PHY and MAC layer with star and peer-to-peer topologies
● Addressing but no routing defined
● Mesh routing possible with layers on top
● Designed for small sensors to run months/years on battery with the right duty cycle
● 127 bytes MTU and 250 kbit/s
● Often mixed-up with ZigBee as it is used as PHY and MAC layer
● Compared to Bluetooth it is older than BTLE and less complex

8

6LoWPAN
● Physical and MAC layer defined by

IEEE 802.15.4

● Series of IETF specifications from
2007 onwards (RFCs 4944, 6282, etc)

● Goal was to use IPv6 in sensor
networks based on IEEE 802.15.4

● Direct IP addressing of nodes

L3 Network Layer
L4 Transport Layer

L1 Physical Layer

L5 Application Layer

L2 Data Link Layer

IP
TCP | UDP | ICMP

Ethernet PHY

Application

Ethernet MAC

IPv6
UDP | ICMPv6

6LoWPAN

IEEE 802.15.4 PHY

Application

IEEE 802.15.4 MAC

● Adaptation layer between data-
link and network layer

● Address auto-configuration

● Frame encapsulation and
fragmentation

● Header compression

9

The Header Size Problem
● Worst-case scenario calculations
● Maximum frame size in IEEE 802.15.4: 127 bytes
● Reduced by the max. frame header (25 bytes): 102 bytes
● Reduced by highest link-layer security (21 bytes): 81 bytes
● Reduced by standard IPv6 header (40 bytes): 41 bytes
● Reduced by standard UDP header (8 bytes): 33 bytes
● This leaves only 33 bytes for actual payload
● The rest of the space is used by headers (~ 3:1 ratio)

Frame Header (25) LLSEC (21) IPv6 Header (40) UDP Payload (33)

10

The Header Size Solution
● IPv6 with link-local and UDP on top

● IPHC with NHC for UDP

● The 48 bytes IPv6 + UDP header could in

the best cases be reduced to 6 bytes

● That allows for a payload of 75 bytes (~ 2:3 ratio)

Frame Header (25) LLSEC (21) 6 Payload (75)

Dispatch (1) LOWPAN_IPHC (1) LOWPAN_NHC (1) UDP Ports (1) UDP Checksum (2)

11

Linux-wpan

12

Why linux-wpan?
● Goal: IEEE 802.15.4 and 6LoWPAN support in mainline
● Platforms already running Linux would benefit from

native IEEE 802.15.4 and 6LoWPAN subsystems
● IEEE 802.15.4 transceivers can easily be added to

existing hardware designs (SPI + few GPIOs)
● Battery powered sensors are more likely to run a RTOS like RIOT,

Contiki or Zephyr, but they need a border router
● Started in 2008 as linux-zigbee project, from 2012

mainline (renamed to linux-wpan)

13

Development Boards
● Raspberry Pi’s with Openlabs shield (AT86RF233)

● Ci40 Creator (CA-8210)

● Transceivers can be hooked up via SPI

(drivers have devicetree bindings)

● ATUSB USB dongle

14

Network Interfaces
● The wpan0 interface shows up

automatically

● Ieee802154 specific configuration over
netlink, e.g. with wpan-tools

● Setting up the basic parameters:

$ ip link set lowpan0 down

$ ip link set wpan0 down

$ iwpan dev wpan0 set pan_id 0xabcd

$ iwpan phy phy0 set channel 0 26

$ ip link add link wpan0 name lowpan0
type lowpan

$ ip link set wpan0 up

$ ip link set lowpan0 up

Setting up the interface in promiscuous
mode:

$ iwpan dev wpan0 del

$ iwpan phy phy0 interface add monitor%d
type monitor

$ iwpan phy phy0 set channel 0 26

$ ip link set monitor0 up

$ wireshark -i monitor0

● No automatic channel hopping (changing
the channel manually in the background is
possible)

15

Socket Interfaces
● AF_INET6 Socket

● Can be used like a normal IPv6 socket

● Transparently handled

sd = socket(PF_INET6,
SOCK_DGRAM, 0);

dst.sin6_family = AF_INET6;

sendto(sd, ...);

● AF_IEEE802154 Socket
● Direct IEEE 802.15.4 communication
● Short and extended addressing schemes as well

as network PAN ID handling

sd = socket(PF_IEEE802154, SOCK_DGRAM, 0);

dst.family = AF_IEEE802154;

dst.addr.pan_id = 0x0023;

dst.addr.addr_type = IEEE802154_ADDR_LONG;

memcpy(&dst.addr.hwaddr, long_addr,
IEEE802154_ADDR_LEN);

or

dst.addr.addr_type =
IEEE802154_ADDR_SHORT;

dst.addr.short_addr = 0x0002;

sendto(sd, ...);

16

Current Status
● 6LoWPAN with fragmentation and reassembly (RFC 4944)
● Header compression with IP header compression (IPHC) and

next header compression (NHC) for UDP (RFC 6282), shared
with Bluetooth subsystem

● ieee802154 layer with softMAC drivers for at86rf2xx, mrf24j40,
cc2520, atusb, adf7242, ca8210 and mcr20a

● Hwsim virtual driver module for testing
● USB dongle to be used on your workstation
● Link Layer Security

17

New Webpage launched
● Recent effort to move project page

wpan.cakelab.org → https://linux-wpan.org

● Old one was to difficult to maintain and access

● New one is with GitHub pages, well known, easy edits

● Existing content has been moved and a redirect is in
place

● More content (e.g. rpld) is needed and

better integration with the kernel docs

https://linux-wpan.org/

18

Wpanusb - past
● Generic USB device driver (like btusb)
● Originally developed by Andrei Emeltchenko

@intel
● ieee802154 does not specify an HCI
● Own USB interface spec based on atusb
● Developed together with Zephyr firmware
● Project stalled in 2018 as Andrei has no time

19

Wpanusb – future
● Taken over by Koen, Eric and Stefan now
● Extend USB interface spec to be more flexible

e.g. capabilities provided by firmware, different
frequency bands, power levels, permanent
address, etc

● CAN subsystem maintainers expressed interest for a
similar generic USB driver

● RIOT OS firmware to be developed in parallel

● Zephyr firmware needs to be updated to new spec
● Bare metal or Contiki implementations?

20

 Kselftest support
● Hwsim will be hooked in kselftest to give an easy

way of regression testing

● Will be used in review process

● Useful during network stack re-work’s

● Basic suite of tests to start with (ieee802154
frames in different sizes, 6lowpan packets in
different sizes, header compression on and off)

21

Linux-wpan Future
● Implement missing parts of the IEEE 802.15.4 specification

● Beacon and MAC command frame support
● Coordinator support in MAC layer and wpan-tools
● Scanning

● Add better support for HardMAC transceivers
● Configuration interface for various header compression modules
● Expose information for routing protocols (started with LQI

already)

22

RTOS Systems

23

RTOS Systems
● Various real time operating systems support IEEE

802.15.4 and 6lowpan
● RIOT
● Contiki
● Zephyr
● OpenThread
● MbedOS (nanostack finally open source from mbed-os-

5.7 onwards)

24

Comparison
Feature Linux RIOT Contiki Zephyr OpenThread

IEEE 802.15.4: data and ACK frames ✔ ✔ ✔ ✔ ✔

IEEE 802.15.4: beacon and MAC command frames ✘ ✘ ✘ ✔ ✔

IEEE 802.15.4: scanning, joining, PAN coordinator ✘ ✘ ✘ ✔ ✔

IEEE 802.15.4: link layer security ✔ ✘ ✔ ✔ ✔

6LoWPAN: frame encapsulation, fragmentation, addressing ✔ ✔ ✔ ✔ ✔

6LoWPAN: IP header compression (RFC 6282) ✔ ✔ ✔ ✔ ✔

6LoWPAN: next header compression, UDP only (RFC 6282) ✔ ✔ ✔ ✔ ✔

6LoWPAN: generic header compression (RFC 7400) ✘ ✘ ✘ ✘ ✘

6LoWPAN: neighbor discovery optimizations (RFC 6775) Partial ✔ ✘ ✘ ✘

RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks ✔ ✔ ✔ ✔ ✘

Mesh link establishment draft ✘ ✔ ✘ ✔ ✔

rpld

26

RPL
● Routing protocol for low power and lossy networks

● IETF approach, route over protocol

● IPv6 Routing Protocol for Low-Power and

Lossy Networks (RFC6550, RFC6553)

● Tree like topology in a mesh, one parent, n childs

● Constructs a directed acyclic graph in an attempt
to minimize the routing costs

27

 RPL- up and down routes

28

rpld
● Unstrung was the Linux user-space reference

● rpld as new alternative
https://github.com/linux-wpan/rpld

● Part of linux-wpan and only around for a year

● Developed by Alexander Aring

● Netdev Conf 0x14 talk RPL: IPv6 Routing Protocol
for LLNs

https://github.com/linux-wpan/rpld

29

rpld – non-storing mode
● In a nutshell RPL has two modes of operation:

Storing: routes are propagated via ICMPv6
messages into the routing table

Non-storing: source routing with routing header

● First implementation with non-storing mode on
Linux by extending the existing Kernel segment
routing

● https://netdevconf.info/0x14/session.html?talk-ext
end-segment-routing-for-RPL

https://netdevconf.info/0x14/session.html?talk-extend-segment-routing-for-RPL
https://netdevconf.info/0x14/session.html?talk-extend-segment-routing-for-RPL

30

rpld – non-storing mode
● Source routing extention header only inserted by

root node

● IPv6 only

● Forwarding with address swapping and loop
detection

● Compression of addresses in headers

● Details on kernel implementation in the

mentioned talk

Thank you!

Bonus

33

Address Auto-configuration & Fragmentation

Stateless address auto-configuration:

● Used for IPv6 networks without DHCP

● Based on layer 2 address

● Extended address uses EUI-64 as is

● Short address uses EUI-48 to EUI-64 mapping

(16 Bit PAN+16 Bit zero+16 Bit short address)

Fragmentation:

● IPv6 requires the link to allow for a MTU of at least 1280 bytes

● Impossible to handle in the 127 bytes MTU of IEEE 802.15.4

● 6LoWPAN adds a 11 bit fragmentation header allows for 2048 bytes

● Fragmentation should still be avoided for best performance

34

IPv6 Header Compression (IPHC)

IPHC (RFC6282)
● Deprecates HC1 & HC2 compressions from RFC4944
● Better compression for global and multicast address, not only link-local
● Compress header fields with common values: version, traffic class, flow

label, hop limit
● NHC IPv6 Extension Header compression (RFC6282)

– Hop-by-Hop, Routing Header, Fragment Header, Destination Options Header,

Mobility Header

● NHC UDP Header compression (RFC6282)
– Compressing ports range to 4 bits
– Allows to omit the UDP checksum for cases where upper layers handle

message integrity checks

35

Generic Header Compression
● Generic approach instead of defining a scheme for each header
● Plugging into NHC
● Useful for header like payload e.g. DTLS or RPL (addresses

elided from dictionary)
● 6CIO option in neighbour discovery messages to indicate

support
● LZ-77 style compression with byte codes (RFC7400)

– Appending zeroes, back referencing to a static dictionary and
copy

36

Mesh-under
● Allow for fast packet forwarding without travelling the IP

stack

● IEEE 802.15.4 does not include mesh routing in the MAC
specification, mesh implementations is an extra layer above
the MAC but below the network layer

● Various (proprietary) implementations (e.g. WirelessHART,
ZigBee mesh, RF mesh, etc)

● IEEE 802.15.5 can also to be used for mesh on top of 15.4

● 6LoWPAN specification has a field for mesh headers

● Lost fragments of bigger packets will cause troubles

37

Thread
● Mesh network specification from Thread Group

● OpenThread implementation from NestLabs

● Routing Information Protocol (RIP) algorithms are
used, but not RIP itself

● Distribution of route information is handled by mesh
link establishment (MLE, IETF drafts dropped)

● MLE allows router to update the tables of routing costs
periodically in a compressed form

● Due to MLE no on-demand route discovery is needed

38

References
● IEEE 802.15.4 specification (PHY and MAC layer)

http://standards.ieee.org/about/get/802/802.15.html

● RFC 4944: Transmission of IPv6 Packets over IEEE 802.15.4 Networks

https://tools.ietf.org/html/rfc4944

● RFC 6282: Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks

https://tools.ietf.org/html/rfc6282

● RFC 7400: 6LoWPAN-GHC: Generic Header Compression for IPv6 over Low-Power Wireless

Personal Area Networks (6LoWPANs)

https://tools.ietf.org/html/rfc7400Lossy Networks

● Linux-wpan source (wpan-tools & rpld) and project pages

https://github.com/linux-wpan

http://standards.ieee.org/about/get/802/802.15.html
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc6282
https://tools.ietf.org/html/rfc7400
https://github.com/linux-wpan

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

