

ieee802154 and rpld

LPC 2020 IoT Microconference

2020-08-27, Virtual

Stefan Schmidt stefan@datenfreihafen.org

Who am I

CONFERENCE

• FOSS developer since 2006

August 24-28, ©20 EFL developer and release manager

 Linux kernel ieee802154 subsystem maintainer

IPv6 over LoWPAN (6LoWPAN)

Products

LINUX **PLUMBERS** CONFERENCE

Products with IEEE 802.15.4 transceivers (using 6LoWPAN, newer ZigBee profiles or OpenThread):

August 24-28, 2020 Nest devices (e.g. thermostat, protect, etc)

- Google WiFi / OnHub router
- IKEA Tradfri system
- Philips Hue light system
- And many, many more

Motivation 6LoWPAN

• "Things" might have restricted wireless connectivity

CONFERENCE Using IPv6 instead of something proprietary allows

the usage of existing and proven protocols driving the Internet

- But unmodified TCP/IP protocol headers can clash with MTU limitations
- Things often only need to transfer small amounts of data

IEEE 802.15.4

• IEEE specifications for Low-Rate Wireless Personal Area

PLUMBERS Networks (LoWPAN)

CONFERENCE Not only low-rate, but also low-power

- PHY and MAC layer with star and peer-to-peer topologies
- Addressing but no routing defined
- Mesh routing possible with layers on top
- Designed for small sensors to run months/years on battery with the right duty cycle
- 127 bytes MTU and 250 kbit/s
- Often mixed-up with ZigBee as it is used as PHY and MAC layer
- Compared to Bluetooth it is older than BTLE and less complex

6LoWPAN

LINUX
PLUMBERS
CONFERENCE

Physical and MAC layer defined by IEEE 802.15.4

CONFERENCE Series of IETF specifications from 2007 onwards (RFCs 4944, 6282, etc)

- Goal was to use IPv6 in sensor networks based on IEEE 802.15.4
- Direct IP addressing of nodes

- Adaptation layer between datalink and network layer
- Address auto-configuration
- Frame encapsulation and fragmentation
- Header compression

L5 Application Layer

L4 Transport Layer

L3 Network Layer

L2 Data Link Layer L1 Physical Layer **Application**

TCP | UDP | ICMP

IP

Ethernet MAC

Ethernet PHY

Application

UDP | ICMPv6

IPv6

6LoWPAN

IEEE 802.15.4 MAC

IEEE 802.15.4 PHY

The Header Size Problem

 Worst-case scenario calculations **PLUMBERS** CONFERENCE Maximum frame size in IEEE 802.15.4: 127 bytes

- Reduced by the max. frame header (25 bytes): 102 bytes
 - Reduced by highest link-layer security (21 bytes): 81 bytes
 - Reduced by standard IPv6 header (40 bytes): 41 bytes
 - Reduced by standard UDP header (8 bytes): 33 bytes
 - This leaves only 33 bytes for actual payload
 - The rest of the space is used by headers (~ 3:1 ratio)

Frame Header (25)

LLSEC (21)

IPv6 Header (40)

UDP

Payload (33)

The Header Size Solution

• IPv6 with link-local and UDP on top PLUMBERS

CONFERENCE IPHC with NHC for UDP

- The 48 bytes IPv6 + UDP header could in the best cases be reduced to 6 bytes
- That allows for a payload of 75 bytes (~ 2:3 ratio)

Frame Header (25) LLSEC (21) 6 Payload (75)

Dispatch (1) LOWPAN_IPHC (1) LOWPAN_NHC (1) UDP Ports (1) UDP Checksum (2)

Linux-wpan

Why linux-wpan?

• Goal: IEEE 802.15.4 and 6LoWPAN support in mainline PLUMBERS. Platforms already running Linux would benefit from

August 24-28, 2020 native IEEE 802.15.4 and 6LoWPAN subsystems

- IEEE 802.15.4 transceivers can easily be added to existing hardware designs (SPI + few GPIOs)
- Battery powered sensors are more likely to run a RTOS like RIOT,
 Contiki or Zephyr, but they need a border router
- Started in 2008 as linux-zigbee project, from 2012 mainline (renamed to linux-wpan)

Development Boards

LINUX • Raspberry Pi's with Openlabs shield (AT86RF233)
PLUMBERS
CONFEREN€E Ci40 Creator (CA-8210)

August 24-28, 2020

- Transceivers can be hooked up via SPI (drivers have devicetree bindings)
- ATUSB USB dongle

Network Interfaces

LINUX
PLUMBERS
CONFERENCE

The wpan0 interface shows up automatically

CONFERENCE leee802154 specific configuration over August 24-28, 2020 netlink, e.g. with wpan-tools

- Setting up the basic parameters:
 - \$ ip link set lowpan0 down
 - \$ ip link set wpan0 down
 - \$ iwpan dev wpan0 set pan_id 0xabcd
 - \$ iwpan phy phy0 set channel 0 26
 - \$ ip link add link wpan0 name lowpan0 type lowpan
 - \$ ip link set wpan0 up
 - \$ ip link set lowpan0 up

Setting up the interface in promiscuous mode:

\$ iwpan dev wpan0 del

\$ iwpan phy phy0 interface add monitor%d type monitor

\$ iwpan phy phy0 set channel 0 26

\$ ip link set monitor0 up

\$ wireshark -i monitor0

 No automatic channel hopping (changing the channel manually in the background is possible)

Socket Interfaces

LINUX
PLUMBERS
CONFERENCE

AF_INET6 Socket

Can be used like a normal IPv6 socket

August 24-28, 2020 Transparently handled

sd = socket(PF_INET6, SOCK_DGRAM, 0);

dst.sin6_family = AF_INET6;

sendto(sd, ...);

- AF_IEEE802154 Socket
- Direct IEEE 802.15.4 communication
- Short and extended addressing schemes as well as network PAN ID handling

```
sd = socket(PF_IEEE802154, SOCK_DGRAM, 0);
dst.family = AF_IEEE802154;
dst.addr.pan_id = 0x0023;
dst.addr.addr_type = IEEE802154_ADDR_LONG;
memcpy(&dst.addr.hwaddr, long_addr,
IEEE802154_ADDR_LEN);
or
dst.addr.addr_type =
IEEE802154_ADDR_SHORT;
dst.addr.short_addr = 0x0002;
sendto(sd, ...);
```

15

Current Status

• 6LoWPAN with fragmentation and reassembly (RFC 4944)

CONFERENCE Header compression with IP header compression (IPHC) and

August 24-28, 2027 next header compression (NHC) for UDP (RFC 6282), shared

with Bluetooth subsystem

- ieee802154 layer with softMAC drivers for at86rf2xx, mrf24j40, cc2520, atusb, adf7242, ca8210 and mcr20a
- Hwsim virtual driver module for testing
- USB dongle to be used on your workstation
- Link Layer Security

New Webpage launched

• Recent effort to move project page

CONFERENCE wpan.cakelab.org → https://linux-wpan.org

Old one was to difficult to maintain and access

New one is with GitHub pages, well known, easy edits

Existing content has been moved and a redirect is in place

 More content (e.g. rpld) is needed and better integration with the kernel docs

Wpanusb - past

LINUX • PLUMBERS CONFERENCE

Generic USB device driver (like btusb)

CONFERENCE Originally developed by Andrei Emeltchenko

August 24-28, 2020

@intel

- ieee802154 does not specify an HCI
- Own USB interface spec based on atusb
- Developed together with Zephyr firmware
- Project stalled in 2018 as Andrei has no time

Wpanusb – future

PLUMBERS

- Taken over by Koen, Eric and Stefan now CONFERENCE Extend USB interface spec to be more flexible e.g. capabilities provided by firmware, different frequency bands, power levels, permanent address, etc
 - CAN subsystem maintainers expressed interest for a similar generic USB driver
 - RIOT OS firmware to be developed in parallel
 - Zephyr firmware needs to be updated to new spec
 - Bare metal or Contiki implementations?

Kselftest support

PLUMBERS

 Hwsim will be hooked in kselftest to give an easy CONFERENCE way of regression testing

August 24-28, 2020

- Will be used in review process
- Useful during network stack re-work's
- Basic suite of tests to start with (ieee802154) frames in different sizes, 6lowpan packets in different sizes, header compression on and off)

Linux-wpan Future

• Implement missing parts of the IEEE 802.15.4 specification PLUMBERS

CONFERENCE Beacon and MAC command frame support

• Coordinator support in MAC layer and wpan-tools

- Scanning
- Add better support for HardMAC transceivers
- Configuration interface for various header compression modules
- Expose information for routing protocols (started with LQI already)

RTOS Systems

RTOS Systems

• Various real time operating systems support IEEE PLUMBERS 802.15.4 and 6lowpan

August 24-28, 202 RIOT

- Contiki
- Zephyr
- OpenThread
- MbedOS (nanostack finally open source from mbed-os-5.7 onwards)

Comparison

LINUX PLUMBERS CONFERENCE

August 24-28, 2020

Feature	Linux	RIOT	Contiki	Zephyr	OpenThread
IEEE 802.15.4: data and ACK frames	1	1	1	1	•
IEEE 802.15.4: beacon and MAC command frames	×	×	×	1	✓
IEEE 802.15.4: scanning, joining, PAN coordinator	×	×	×	1	1
IEEE 802.15.4: link layer security	1	×	1	1	1
6LoWPAN: frame encapsulation, fragmentation, addressing	•	1	1	1	✓
6LoWPAN: IP header compression (RFC 6282)	1	1	1	1	✓
6LoWPAN: next header compression, UDP only (RFC 6282)	1	1	1	1	✓
6LoWPAN: generic header compression (RFC 7400)	×	×	×	×	×
6LoWPAN: neighbor discovery optimizations (RFC 6775)	Partial	1	×	×	×
RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks	1	1	•		×
Mesh link establishment draft	×	1	×		1

rpld

RPL

• Routing protocol for low power and lossy networks

CONFERENÇE IETF approach, route over protocol

- IPv6 Routing Protocol for Low-Power and Lossy Networks (RFC6550, RFC6553)
- Tree like topology in a mesh, one parent, n childs
- Constructs a directed acyclic graph in an attempt to minimize the routing costs

RPL- up and down routes

LINUX PLUMBERS CONFERENCE

August 24-28, 2020

rpld

• Unstrung was the Linux user-space reference

CONFERENCE rpld as new alternative

https://github.com/linux-wpan/rpld

- Part of linux-wpan and only around for a year
- Developed by Alexander Aring
- Netdev Conf 0x14 talk RPL: IPv6 Routing Protocol for LLNs

rpld – non-storing mode

INUX • In a nutshell RPL has two modes of operation:

CONFERENCE Storing: routes are propagated via ICMPv6

messages into the routing table

Non-storing: source routing with routing header

- First implementation with non-storing mode on Linux by extending the existing Kernel segment routing
- https://netdevconf.info/0x14/session.html?talk-ext end-segment-routing-for-RPL

rpld – non-storing mode

PLUMBERS CONFERENCE root node

Source routing extention header only inserted by

August 24-28, 2020

- IPv6 only
- Forwarding with address swapping and loop detection
- Compression of addresses in headers
- Details on kernel implementation in the mentioned talk

Thank you!

Bonus

Address Auto-configuration & Fragmentation

LINUX **PLUMBERS** CONFERENC

Stateless address auto-configuration:

Used for IPv6 networks without DHCP

August 24-28, 2020 Based on layer 2 address

- Extended address uses EUI-64 as is
- Short address uses EUI-48 to EUI-64 mapping

(16 Bit PAN+16 Bit zero+16 Bit short address)

Fragmentation:

- IPv6 requires the link to allow for a MTU of at least 1280 bytes
- Impossible to handle in the 127 bytes MTU of IEEE 802.15.4
- 6LoWPAN adds a 11 bit fragmentation header allows for 2048 bytes
- Fragmentation should still be avoided for best performance

IPv6 Header Compression (IPHC)

LINUX IPHC (RFC6282)

PLUMBERS Deprecates HC1 & HC2 compressions from RFC4944

CONFERENCE etter compression for global and multicast address, not only link-local

 Compress header fields with common values: version, traffic class, flow label, hop limit

- NHC IPv6 Extension Header compression (RFC6282)
 - Hop-by-Hop, Routing Header, Fragment Header, Destination Options Header,
 Mobility Header
- NHC UDP Header compression (RFC6282)
 - Compressing ports range to 4 bits
 - Allows to omit the UDP checksum for cases where upper layers handle message integrity checks

Generic Header Compression

• Generic approach instead of defining a scheme for each header PLUMBERS. Plugging into NHC

elided from dictionary)

- 6CIO option in neighbour discovery messages to indicate support
- LZ-77 style compression with byte codes (RFC7400)
 - Appending zeroes, back referencing to a static dictionary and copy

Mesh-under

PLUMBERS

Allow for fast packet forwarding without travelling the IP stack

- IEEE 802.15.4 does not include mesh routing in the MAC specification, mesh implementations is an extra layer above the MAC but below the network layer
 - Various (proprietary) implementations (e.g. WirelessHART, ZigBee mesh, RF mesh, etc)
 - IEEE 802.15.5 can also to be used for mesh on top of 15.4
 - 6LoWPAN specification has a field for mesh headers
 - Lost fragments of bigger packets will cause troubles

Thread

PLUMBERS

Mesh network specification from Thread Group

CONFERENCE OpenThread implementation from NestLabs

- Routing Information Protocol (RIP) algorithms are used, but not RIP itself
- Distribution of route information is handled by mesh link establishment (MLE, IETF drafts dropped)
- MLE allows router to update the tables of routing costs periodically in a compressed form
- Due to MLE no on-demand route discovery is needed

References

LINUX PLUMBERS CONFERENCE

IEEE 802.15.4 specification (PHY and MAC layer)

http://standards.ieee.org/about/get/802/802.15.html

August 24-28, 2020 RFC 4944: Transmission of IPv6 Packets over IEEE 802.15.4 Networks

https://tools.ietf.org/html/rfc4944

 RFC 6282: Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks https://tools.ietf.org/html/rfc6282

• RFC 7400: 6LoWPAN-GHC: Generic Header Compression for IPv6 over Low-Power Wireless

Personal Area Networks (6LoWPANs)

https://tools.ietf.org/html/rfc7400Lossy Networks

Linux-wpan source (wpan-tools & rpld) and project pages

https://github.com/linux-wpan

