
Traceloop and BPF
Linux Plumbers Conference | 2020.08.24
https://linuxplumbersconf.org/event/7/contributions/667/

https://linuxplumbersconf.org/event/7/contributions/667/

Hi, I’m Alban
Alban Crequy
Co-Founder &
Director of Kinvolk Labs,
Kinvolk

Github: alban
Twitter: @albcr
Email: alban@kinvolk.io

Hi, I’m Kai
Kai Lüke
Software Engineer, Kinvolk

Github: pothos
Email: kai@kinvolk.io

Traceloop
Traces system calls per cgroup, using BPF and
overwritable ring buffers to keep the logs
https://github.com/kinvolk/traceloop

Used in Inspektor Gadget
A Collection of BPF gadgets for developers of
Kubernetes applications
https://github.com/kinvolk/inspektor-gadget

https://github.com/kinvolk/traceloop
https://github.com/kinvolk/inspektor-gadget

Problem statement

- Debugging distributed applications is hard

- Tracing tools can help us to see what’s going on

- strace is great but needs to attach to every
processes before the event happens

❏ Would need to know when crashes happen
❏ Performance impact to high if always-on

Idea: “Flight Recorder”

- Capture syscalls with BPF instead of ptrace
- Save the events to a per-cgroup (or similar) ring

buffer without leaving kernel space
- Assume that discarding old events is acceptable
- Only transfer the ring buffer events to userspace

when requested
- Limit global impact by only tracing a

list of cgroups (no-op otherwise)

Comparing strace and traceloop

strace traceloop

Capture method ptrace BPF on tracepoints

Granularity process global, filter cgroup/UTS namespace¹

Speed slow fast

Reliability Synchronous
Cannot lose events

Asynchronous
Can lose events

Can fail to read buffers (EFAULT) when
dumping syscall arguments

Maturity Covers many cases Not all syscall arguments are read
Only AMD64 syscalls recognized

¹ could also be process

Architecture

Architecture
BPF program

(tracepoint sys_enter)

BPF program
(tail call)

logs syscalls

perf ring buffer
syscall events

BPF program
(tail call)

logs syscalls

perf ring buffer
syscall events

HashMap “cgrpTailcall”
Key: cgroup_id
Value: BPF program

cgroup 1:

cgroup 2:

kernel

userspace
traceloop

Only read the ring buffer when
needed

(No-op for other cgroups)

Live swap ring buffer if tracing is
ongoing to lose no events

(backwards overwritable)

Decide to trace

1. Tracing a cgroup on the command line
a. Output dump at exit

b. Continuous output (might lose events)

$ sudo traceloop cgroups --dump-on-exit
/sys/fs/cgroup/unified/system.slice/sshd.service

^C
(output)

Different modes of execution (1/5)

$ sudo traceloop cgroups /sys/fs/cgroup/unified/system.slice/sshd.service
(continuous output)
Press Ctrl-S to pause, Ctrl-Q to continue, Ctrl-C to quit

Different modes of execution (2/5)

2. Daemon receiving http commands on a unix socket

- Possible commands in the URL:
- /add
- /list
- /dump, /dump-pod, /dump-by-name, /dump-by-cgroup, /dump-by-traceid
- /close, /close-by-name

$ sudo traceloop serve &

$ sudo curl --unix-socket /run/traceloop.socket \
'http://localhost/add?
name=sshd&cgrouppath=/sys/fs/cgroup/unified/system.slice/sshd.service'

Registration and trace lifetime
Ring buffer

2. Create ring
buffer and

register tailcall
for cgroup

3. Fill buffer,
overwrite

oldest events

BPF prog

Traceloop process client (curl)

5. Swap
to dump trace,

concatenate
trace with old trace

(trim max size)

4. Request trace

7. Close trace:
delete ring buffer

and userspace trace

6. Send post-processed trace

1. Register cgroup

Different modes of execution (3/5)

3. Registering a Systemd service:

(contrib/current-cgroup is available in the traceloop repo)

[Service]
ExecStartPre=/bin/sh -c 'curl --unix-socket /run/traceloop.socket
"http://localhost/add?name=myservice&cgrouppath=$(./current-cgroup)"'
ExecStart=/usr/bin/myservice

Different modes of execution (4/5)

4. Kubernetes mode
Inspektor Gadget has a DaemonSet with an entrypoint.sh containing:

Include HTTP server on the unix socket as well, plus:

- Pod discovery: fetch local pods from the Kubernetes API Server
- Proc informer: regularly look in /proc/
- Annotation publisher

On Pod termination the BPF ring buffer is dumped and recycled, the trace is kept in userspace
for 3 hours

/bin/traceloop k8s

BPF perf map
(overwritable)

events

BPF perf map
(overwritable)

events
BPF prog

tail-call

BPF prog
tail-call

UTS ns

Traceloop process

Keeping track of Kubernetes containers

Main
loop

Pod discovery

Proc informer

Annotation
publisher

Kubernetes API
Server

/proc/*/ns/uts
/proc/*/cgroupPodUID, ContainerID

UTS namespace ID?

namespace/podname
PodUID, ContainerIDs

Get local pods

Kubernetes API
Server

Patch gadget
annotations

BPF prog
tp/sys_enter

BPF
hash map
utsns_map

BPF prog
tail-call

BPF perf map
(overwritable)

events

idx

BPF
prog array map

tail_call_enter

tail call
(idx)

register

BPF perf map
container_events

New container
(pid, idx, utsns, cgroup_path)

curl
Get traces

kubectl gadget traceloop show $TRACE_ID

Different modes of execution (5/5)

5. Start traceloop as container
Same possibilities as using the traceloop binary but in a container

$ docker run --rm \
-v /sys/kernel/debug:/sys/kernel/debug \
-v /sys/fs/cgroup:/sys/fs/cgroup \
-v /sys/fs/bpf:/sys/fs/bpf \
-v /run:/run \
--privileged \
kinvolk/traceloop

How to get a list of syscalls?

Syscalls and their numbers: /usr/include/asm/unistd_64.h

Parameters:
/sys/kernel/debug/tracing/events/syscalls/sys_enter_
${name}/format

Post process some syscalls:

- new{uname,fstat,lstat,stat}→{uname,fstat,lstat,stat},
sendfile64→sendfile, sysctl→_sysctl, umount→umount2

- Dereferencing strings with the correct size
- NULL terminated strings, size known at sys_enter or known at sys_exit
- Dereference at sys_enter or sys_exit

- Some syscalls don’t return: exit_group()
- Some syscalls return twice: clone()

openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC)
write(1, "foo", 3) = 3
read(0, "foo", 131072) = 3
exit_group()

Processing syscall arguments

Syscall arg0 arg1 arg2 ...

opentat() 0 Read until NULL byte 0 0

write() 0 Param length in arg2 0 0

read() 0 Param length in ret,
probe at exit

0 0

Processing syscall data

BPF tail-call prog
tp/sys_enter

BPF map
tail_call_enter

BPF tail-call prog
tp/sys_exit

BPF perf map
(overwritable)

BPF map
tail_call_exit

BPF hash map
probe_at_sys_exit

K: pid
V: nr, args

BPF hash map
syscalls

(annotation)

Events

Enter
–––––––––

[Parameter Buffers]
…

–––––––––
Exit

Examples of event stream

Event Enter: read(0, 0xcafe, 131072)

Event Parameter: arg1 = “foo”

Event Exit: ret=3

Event Enter: write(0, 0xcafe, 3)

Event Parameter: arg1 = “foo”

Event Exit: ret=3

Event from sys_enter

Event from sys_exit

Benchmarks

Benchmark
sync: log buffers, async: log pointers, mmap: no syscalls

Limitations

Limitations: bpf_probe_read
int main() {
#define FILENAME "/tmp/traceloop-test.data"
 open(FILENAME, O_RDWR, 0);
 open(FILENAME, O_RDWR, 0);
 return 0;
}

openat(4294967196, "(Pointer deref failed!)", 2, 0) = 3
openat(4294967196, "/tmp/traceloop-test.data", 2, 0) = 4

Limitations: BPF

- Memory pages may not be present when dereferencing a
syscall parameter: data may not be loaded to memory at
the beginning of the syscall

- Cases: First reference to data segment in binary or a
reference into an mmaped file

- Workarounds can be to try again at syscall exit but that is
not valid for all parameters and in general
swapping/cache flushing can also happen

Limitations: Traceloop

- Doesn’t yet detect buffer wraps to mark missing events (even
harder when merging per-CPU buffers)

- Merging per-CPU buffers does sorting of timestamps which can
have corner cases

- The whole trace data is post-processed each time and not only
the new events with those old events they refer to

- Currently max. buffer length for syscall parameters is 128 bytes
- Not all syscalls have annotation for dereferencing parameters

and detecting constants or structs

Limitations: Detection of new
cgroups/containers

- Possible with systemd StartPre trick if permissions are right
- On Kubernetes automatic detection currently done with runc

mount tracepoint hack and a pool of free buffers
- Currently traces all pods, no configuration yet
- Integration with container OCI hooks was tried with Flatcar

Edge but relied on runc patches

Limitations: Memory usage

- Currently per-CPU perf buffers for a cgroup
- Even if buffers are closed, dumps in userspace consume

memory too until they are closed (no compression yet)
- In the Kubernetes setup, traceloop’s settings:

- Ring buffer pre-allocation for 128 containers
- Traceloop uses 64 pages per ring buffer

- Scenario with 16 CPUs:
- 64 * 4KiB * 16 * 128 = 512 MiB of non-swappable memory

- Map type: BPF_MAP_TYPE_PERF_EVENT_ARRAY
- Linux 4.3
- Lockless writing

Perf ring buffers: per CPU

cpu#0

read
write

ring buffer

cpu#1

read
write

ring buffer

cpu#2

read
write

ring buffer

cpu#3

read
write

ring buffer

syscall1
syscall2

...
Reordering in userspace

Normal perf ring buffers
struct perf_event_attr attr = {0,};
fd = perf_event_open_map(&attr, ...);
base = mmap(fd, 0, size, PROT_READ|PROT_WRITE, MAP_SHARED);

struct {
 struct perf_event_header header;
 u32 size;
 char data[size];
}

struct {
 struct perf_event_header header;
 u32 size;
 char data[size];
}

Write pointer0 lenRead pointer

New sample
to write

Cannot write when full

Read and write in this direction

Write in this direction

Backward & overwritable ring buffers
struct perf_event_attr attr = {0,};
attr.write_backward = 1; /* backward */
fd = perf_event_open_map(&attr, ...);
base = mmap(fd, 0, size, PROT_READ /* overwriteable */, MAP_SHARED);

struct {
 struct perf_event_header header;
 u32 size;
 char data[size];
}

struct {
 struct perf_event_header header;
 u32 size;
 char data[size];
}

Single pointer0 len

New sample
to write

Read in this direction

- Map type: BPF_MAP_TYPE_RINGBUF
- Linux 5.8

New BPF ring buffers

cpu#0,1,2,3

read
write

ring buffer

syscall1
syscall2

...
No reordering in userspace

Reservation under spinlock
Commit lockless

Decoding arguments with BTF

- Not decoded today:
- Constants (e.g. AT_FDCWD)
- Structs (struct msghdr)

- BTF

openat(4294967196, "/tmp/traceloop-test.data", 2, 0) = 4
recvfrom(3, 94708461554656, 102400, 0, 0, 0) = 362

Outlook: What can be improved?

● Use the new BPF ring buffers to simplify the
post-processing and reduce memory usage

○ Need a mode for being backwards overwritable

● Integrate better with systemd
○ A PrivilegedStartPre /StopPostHook (?) that knows the cgroup path would

help to register the service to traceloop

● Anticipate availability of OCI hooks
● Annotate more syscalls/use BTF?

Alban Crequy
Github: alban
Twitter: @albcr
Email: alban@kinvolk.io

Questions?

Kinvolk
Blog: kinvolk.io/blog
Twitter: kinvolkio
Email: hello@kinvolk.io

Kubernetes Slack: #inspektor-gadget
Source Code: https://github.com/kinvolk/traceloop/

Kai Lüke
Github: pothos
Email: kai@kinvolk.io

https://github.com/kinvolk/traceloop/

Backup slides

BPF prog
sys_exit_write

ktime()

event_output()

BPF prog
sys_enter_write

CPU #1

ktime()

event_output()

BPF prog
sys_enter_read

ktime()

event_output()

CPU #2

